The millimeter-wave rotational spectrum of ketene (H2C=C=O) has been collected and analyzed from 130 to 750 GHz, providing highly precise spectroscopic constants from a sextic, S-reduced Hamiltonian in the Ir representation. The chemical synthesis of deuteriated samples allowed spectroscopic measurements of five previously unstudied ketene isotopologues. Combined with previous work, these data provide a new, highly precise, and accurate semi-experimental (reSE) structure for ketene from 32 independent moments of inertia. This reSE structure was determined with the experimental rotational constants of each available isotopologue, together with computed vibration–rotation interaction and electron-mass distribution corrections from coupled-cluster calculations with single, double, and perturbative triple excitations [CCSD(T)/cc-pCVTZ]. The 2σ uncertainties of the reSE parameters are ≤0.0007 Å and 0.014° for the bond distances and angle, respectively. Only S-reduced spectroscopic constants were used in the structure determination due to a breakdown in the A-reduction of the Hamiltonian for the highly prolate ketene species. All four reSE structural parameters agree with the “best theoretical estimate” (BTE) values, which are derived from a high-level computed re structure [CCSD(T)/cc-pCV6Z] with corrections for the use of a finite basis set, the incomplete treatment of electron correlation, relativistic effects, and the diagonal Born–Oppenheimer breakdown. In each case, the computed value of the geometric parameter lies within the statistical experimental uncertainty (2σ) of the corresponding semi-experimental coordinate. The discrepancies between the BTE structure and the reSE structure are 0.0003, 0.0000, and 0.0004 Å for rC–C, rC–H, and rC–O, respectively, and 0.009° for θC–C–H.
more »
« less
Semi-experimental equilibrium ( r e SE) and theoretical structures of hydrazoic acid (HN3)
Hydrazoic acid (HN3) is used as a case study for investigating the accuracy and precision by which a molecular structure—specifically, a semi-experimental equilibrium structure (reSE)—may be determined using current state-of-the-art methodology. The influence of the theoretical corrections for effects of vibration–rotation coupling and electron-mass distribution that are employed in the analysis is explored in detail. The small size of HN3 allowed us to deploy considerable computational resources to probe the basis-set dependence of these corrections using a series of coupled-cluster single, double, perturbative triple [CCSD(T)] calculations with cc-pCVXZ (X = D, T, Q, 5) basis sets. We extrapolated the resulting corrections to the complete basis set (CBS) limit to obtain CCSD(T)/CBS corrections, which were used in a subsequent reSE structure determination. The reSE parameters obtained using the CCSD(T)/cc-pCV5Z corrections are nearly identical to those obtained using the CCSD(T)/CBS corrections, with uncertainties in the bond distances and angles of less than 0.0006 Å and 0.08°, respectively. The previously obtained reSE structure using CCSD(T)/ANO2 agrees with that using CCSD(T)/cc-pCV5Z to within 0.000 08 Å and 0.016° for bond distances and angles, respectively, and with only 25% larger uncertainties, validating the idea that reSE structure determinations can be carried out with significantly smaller basis sets than those needed for similarly accurate, strictly ab initio determinations. Although the purely computational re structural parameters [CCSD(T)/cc-pCV6Z] fall outside of the statistical uncertainties (2σ) of the corresponding reSE structural parameters, the discrepancy is rectified by applying corrections to address the theoretical limitations of the CCSD(T)/cc-pCV6Z geometry with respect to basis set, electron correlation, relativity, and the Born–Oppenheimer approximation, thereby supporting the contention that the semi-experimental approach is both an accurate and vastly more efficient method for structure determinations than is brute-force computation.
more »
« less
- Award ID(s):
- 1954270
- PAR ID:
- 10433931
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 157
- Issue:
- 3
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The 1H- and 2H-1,2,3-triazoles are isomeric five-membered ring, aromatic heterocycles that may undergo chemical equilibration by virtue of intramolecular hydrogen migration (tautomerization). Using millimeter-wave spectroscopy in the 130–375 GHz frequency range, we measured the spectroscopic constants for thirteen 1H-1,2,3-triazole and sixteen 2H-1,2,3-triazole isotopologues. Herein, we provide highly accurate and highly precise semi-experimental equilibrium (reSE) structures for the two tautomers based on the spectroscopic constants of each set of isotopologues, together with vibration–rotation interaction and electron-mass distribution corrections calculated using coupled-cluster singles, doubles, and perturbative triples calculations [CCSD(T)/cc-pCVTZ]. The resultant structures are compared with a “best theoretical estimate” (BTE), which has recently been shown to be in exceptional agreement with the semi-experimental equilibrium structures of other aromatic molecules. Bond distances of the 1H tautomer are determined to <0.0008 Å and bond angles to <0.2°. For the 2H tautomer, bond angles are also determined to <0.2°, but bond distances are less precise (2σ ≤ 0.0015). Agreement between BTE and reSE values is discussed.more » « less
-
The focal-point approximation can be used to estimate a high-accuracy, slow quantum chemistry computation by combining several lower-accuracy, faster computations. We examine the performance of focal-point methods by combining second-order Møller–Plesset perturbation theory (MP2) with coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] for the calculation of harmonic frequencies and that of fundamental frequencies using second-order vibrational perturbation theory (VPT2). In contrast to standard CCSD(T), the focal-point CCSD(T) method approaches the complete basis set (CBS) limit with only triple-ζ basis sets for the coupled-cluster portion of the computation. The predicted harmonic and fundamental frequencies were compared with the experimental values for a set of 20 molecules containing up to six atoms. The focal-point method combining CCSD(T)/aug-cc-pV(T + d)Z with CBS-extrapolated MP2 has mean absolute errors vs experiment of only 7.3 cm−1 for the fundamental frequencies, which are essentially the same as the mean absolute error for CCSD(T) extrapolated to the CBS limit using the aug-cc-pV(Q + d)Z and aug-cc-pV(5 + d)Z basis sets. However, for H2O, the focal-point procedure requires only 3% of the computation time as the extrapolated CCSD(T) result, and the cost savings will grow for larger molecules.more » « less
-
Abstract The global minima of urea and thiourea were characterized along with other low‐lying stationary points. Each structure was optimized with the CCSD(T) method and triple‐ζcorrelation consistent basis sets followed by harmonic vibrational frequency computations. Relative energies evaluated near the complete basis set limit with both canonical and explicitly correlated CCSD(T) techniques reveal several subtle but important details about both systems. These computations resolve a discrepancy by demonstrating that the electronic energy of the C2vsecond‐order saddle point of urea lies at least 1.5 kcal mol−1above the C2global minimum regardless of whether the structures were optimized with MP2, CCSD, or CCSD(T). Additionally, urea effectively has one minimum instead of two because the electronic barrier for inversion at one amino group in the Cslocal minimum vanishes at the CCSD(T) CBS limit. Characterization of both systems with the same ab initio methods and large basis sets conclusively establishes that the electronic barriers to inversion at one or both NH2groups in thiourea are appreciably smaller than in urea. CCSDT(Q)/cc‐pVTZ computations show higher‐order electron correlation effects have little impact on the relative energies and are consistently offset by core correlation effects of opposite sign and comparable magnitude.more » « less
-
This study systematically characterizes the four homogeneous and six heterogeneous hydrogen-bonded dimers formed by hydrogen halide pairs (HX/HY where X, Y = F, Cl, Br, and I). The notation HX⋯HY indicates the direction of the hydrogen bond from the HY donor to the HX acceptor. All stationary points reported for these ten dimer systems are fully optimized utilizing the MP2 and CCSD(T) ab initio methods in conjunction with quadruple-ζ correlation-consistent basis sets augmented with diffuse functions, and their nature is verified by harmonic vibrational frequency computations. The electronic dissociation energies (De) for all ten global minima are evaluated near the CCSD(T) complete basis set (CBS) limit via extrapolation schemes. These values are 19.11, 8.32, 7.38, and 6.22 kJ mol−1 for the homogeneous dimers of HF, HCl, HBr, and HI, respectively. For the heterogeneous pairs, the lighter hydrogen halide is consistently the donor in the global minimum configuration, with De ranging from 12.23 kJ mol−1 for HCl⋯HF to 7.22 kJ mol−1 for HI⋯HBr near the CCSD(T) CBS limit. Interestingly, not all heterodimer donor/acceptor permutations correspond to minima. For example, the HCl⋯HBr configuration is identified as a local minimum at all levels of theory employed in this investigation, whereas the in-plane barrier for donor/acceptor exchange vanishes for HCl⋯HI and HBr⋯HI when larger quadruple-ζ basis sets are utilized. For the seven dimer systems containing Br and/or I, the structures, energetics, and vibrational frequencies computed using conventional valence-only electron correlation procedures are similar to those obtained using an expanded valence treatment that includes the (n − 1)d subvalence electrons associated with Br and I.more » « less
An official website of the United States government

