skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Overview of the Special Issue “Protein-Based Infection, Inheritance, and Memory”
The Special Issue “Protein-Based Infection, Inheritance, and Memory” includes a set of experimental and review papers covering different aspects of protein memory, infection, and inheritance [...]  more » « less
Award ID(s):
1817976
PAR ID:
10434040
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
24
Issue:
14
ISSN:
1422-0067
Page Range / eLocation ID:
11280
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Different modes of non‐genetic inheritance are expected to affect population persistence in fluctuating environments. We here analyseCaenorhabditis elegansdensity‐independent per capita growth rate time series on 36 populations experiencing six controlled sequences of challenging oxygen level fluctuations across 60 generations, and parameterise competing models of non‐genetic inheritance in order to explain observed dynamics. Our analysis shows that phenotypic plasticity and anticipatory maternal effects are sufficient to explain growth rate dynamics, but that a carryover model where ‘epigenetic’ memory is imperfectly transmitted and might be reset at each generation is a better fit to the data. We further find that this epigenetic memory is asymmetric since it is kept for longer when populations are exposed to the more challenging environment. Our analysis suggests that population persistence in fluctuating environments depends on the non‐genetic inheritance of phenotypes whose expression is regulated across multiple generations. 
    more » « less
  2. The female reproductive tract (FRT) is the most common site of infection during HIV transmission to women, but viral remodeling complicates characterization of cells targeted for infection. Here, we report extensive phenotypic analyses of HIV-infected endometrial cells by CyTOF, and use a ‘nearest neighbor’ bioinformatics approach to trace cells to their original pre-infection phenotypes. Like in blood, HIV preferentially targets memory CD4+ T cells in the endometrium, but these cells exhibit unique phenotypes and sustain much higher levels of infection. Genital cell remodeling by HIV includes downregulating TCR complex components and modulating chemokine receptor expression to promote dissemination of infected cells to lymphoid follicles. HIV also upregulates the anti-apoptotic protein BIRC5, which when blocked promotes death of infected endometrial cells. These results suggest that HIV remodels genital T cells to prolong viability and promote viral dissemination and that interfering with these processes might reduce the likelihood of systemic viral spread. 
    more » « less
  3. Abstract The mechanism surrounding chromosome inheritance during cell division has been well documented, however, organelle inheritance during mitosis is less understood. Recently, the endoplasmic reticulum (ER) has been shown to reorganize during mitosis, dividing asymmetrically in proneuronal cells prior to cell fate selection, indicating a programmed mechanism of inheritance. ER asymmetric partitioning in proneural cells relies on the highly conserved ER integral membrane protein, Jagunal (Jagn). Knockdown of Jagn in the compound Drosophila eye displays a pleotropic rough eye phenotype in 48% of the progeny. To identify genes involved in Jagn dependent ER partitioning pathway, we performed a dominant modifier screen of the 3rd chromosome for enhancers and suppressors of this Jagn-RNAi-induced rough eye phenotype. We screened through 181 deficiency lines covering the 3L and 3R chromosomes and identified 12 suppressors and 10 enhancers of the Jagn-RNAi phenotype. Based on the functions of the genes covered by the deficiencies, we identified genes that displayed a suppression or enhancement of the Jagn-RNAi phenotype. These include Division Abnormally Delayed (Dally), a heparan sulfate proteoglycan, the γ-secretase subunit Presenilin, and the ER resident protein Sec63. Based on our understanding of the function of these targets, there is a connection between Jagn and the Notch signaling pathway. Further studies will elucidate the role of Jagn and identified interactors within the mechanisms of ER partitioning during mitosis. 
    more » « less
  4. Galbut virus (family Partitiviridae) infects Drosophila melanogaster and can be transmitted vertically from infected mothers or infected fathers with near perfect efficiency. This form of super-Mendelian inheritance should drive infection to 100% prevalence, and indeed, galbut virus is ubiquitous in wild D. melanogaster populations. However, on average, only about 60% of individual flies are infected. One possible explanation for this is that a subset of flies are resistant to infection. Although galbut virus-infected flies appear healthy, infection may be sufficiently costly to drive selection for resistant hosts, thereby decreasing overall prevalence. To test this hypothesis, we quantified a variety of fitness-related traits in galbut virus-infected flies from two lines from the Drosophila Genetic Reference Panel (DGRP). Galbut virus-infected flies had no difference in average lifespan and total offspring production compared to their uninfected counterparts. Galbut virus-infected DGRP-517 flies pupated and eclosed faster than their uninfected counterparts. Some galbut virus-infected flies exhibited altered sensitivity to viral, bacterial, and fungal pathogens. The microbiome composition of flies was not measurably perturbed by galbut virus infection. Differences in phenotype attributable to galbut virus infection varied as a function of fly sex and DGRP strain, and differences attributable to infection status were dwarfed by larger differences attributable to strain and sex. Thus, galbut virus infection does produce measurable phenotypic changes, with changes being minor, offsetting, and possibly net-negative. 
    more » « less
  5. null (Ed.)
    All the different forms of life on our planet – including animals, plants, fungi and bacteria – tend to grow, multiply and expand. This happens through a process called cell division, where one cell becomes two; two cells become four; four cells become eight; and so on. Each dividing cell passes on the same set of genetic instructions to its two daughter cells in the form of DNA. Its remaining contents, made up of a mixture of proteins, RNA and other chemicals, also get divided up equally between the two new cells. This division of cellular assets establishes a form of 'cellular memory', where daughter cells retain very similar properties to their ancestors, which helps them remain stable over time. Yet this memory can fade, and small changes in how a cell looks or acts can appear over many generations of cell division. This happens even when the exact same set of DNA-based genetic instructions have been passed down to daughter cells, confirming that other factors aside from DNA do influence cellular properties and can act to maintain them or introduce variation over time. Here, Vashistha, Kohram and Salman set out to understand how long cellular memory could be maintained in dividing E. coli bacteria. To do this, they created a technique to track cellular memory as it passed down from a single mother cell to two daughter cells over dozens of generations. Using this technique, Vashistha, Kohram and Salman found that some inherited elements, including cell size and the time cells took to divide, were maintained between mother and daughter cells for almost 10 generations. Other elements, such as the density of proteins inside each cell, started changing almost immediately after daughter cells were formed, and only remained similar for about two generations. These findings suggest that cellular memory may be long, but is not infinite, and that inheritance of non-genetic elements can help maintain cellular memory and reduce variation among new-born cells for considerable number of generations. Building on this research to achieve a better understanding of cellular memory may allow researchers to harness these insights to direct the evolution of different cellular properties over time. This could have a wide range of potential applications, such as designing new infection control measures for viruses or bacteria; enhancing our ability to grow working organs for tissue transplant; or improving the texture and consistency of cultured, lab-grown meat. 
    more » « less