skip to main content

Title: Plasmonic properties of composition graded spherical nanoparticles in quasi-static approximation
Abstract During the operation of a localized surface plasmon resonance (LSPR) sensor made in the form of a core–shell nanoparticle with the shell acting as a sensing layer, the target molecules penetrate into the shell due to intrinsic diffusion or reaction mechanisms. As a result, these molecules or various reactants are nonuniformly distributed in the shell layer. Such sensing particles are termed composition graded plasmonic particles, and their LSPR characteristics may be quite different from those of the uniform core–shell particles. Here, under the quasi-static assumption, a perturbation theory is developed to predict the LSPR properties of composition graded plasmonic particles. The effects of the composition gradient on the LSPR properties due to a metal hydride, a dielectric, and an effective medium are either numerically calculated or analytically derived. Our results show that various configurations of the composition gradient can tune the location and the amplitude of the LSPR peak. The results are important for understanding the sensing performance of composition graded plasmonic particles, and the perturbative treatment presented here can also be used for other composition graded structures.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Placing plasmonic nanoparticles (NPs) in close proximity to semiconductor nanostructures renders effective tuning of the optoelectronic properties of semiconductors through the localized surface plasmon resonance (LSPR)-induced enhancement of light absorption and/or promotion of carrier transport. Herein, we report on, for the first time, the scrutiny of carrier dynamics of perovskite solar cells (PSCs) via sandwiching monodisperse plasmonic/dielectric core/shell NPs with systematically varied dielectric shell thickness yet fixed plasmonic core diameter within an electron transport layer (ETL). Specifically, a set of Au NPs with precisely controlled dimensions ( i.e. , fixed Au core diameter and tunable SiO 2 shell thickness) and architectures (plain Au NPs and plasmonic/dielectric Au/SiO 2 core/shell NPs) are first crafted by capitalizing on the star-like block copolymer nanoreactor strategy. Subsequently, these monodisperse NPs are sandwiched between the two consecutive TiO 2 ETLs. Intriguingly, there exists a critical dielectric SiO 2 shell thickness, below which hot electrons from the Au core are readily injected to TiO 2 ( i.e. , hot electron transfer (HET)); this promotes local electron mobility in the TiO 2 ETL, leading to improved charge transport and increased short-circuit current density ( J sc ). It is also notable that the HET effect moves up the Fermi level of TiO 2 , resulting in an enhanced built-in potential and open-circuit voltage ( V oc ). Taken together, the PSCs constructed by employing a sandwich-like TiO 2 /Au NPs/TiO 2 ETL exhibit both greatly enhanced J sc and V oc , delivering champion PCEs of 18.81% and 19.42% in planar and mesostructured PSCs, respectively. As such, the judicious positioning of rationally designed monodisperse plasmonic NPs in the ETL affords effective tailoring of carrier dynamics, thereby providing a unique platform for developing high-performance PSCs. 
    more » « less
  2. The ternary manganese pnictide phases, MnAs 1− x Sb x , are of interest for magnetic refrigeration and waste heat recovery due to their magnetocaloric properties, maximized at the Curie temperature ( T C ), which varies from 580–240 K, depending on composition. Nanoparticles potentially enable application in microelectronics (cooling) or graded composites that can operate over a wide temperature range, but manganese pnictides are synthetically challenging to realize as discrete nanoparticles and their fundamental magnetic properties have not been extensively studied. Accordingly, colloidal synthesis methods were employed to target discrete MnAs x Sb 1− x nanoparticles ( x = 0.1–0.9) by arrested precipitation reactions of Mn 2 (CO) 10 with (C 6 H 5 ) 3 AsO and (C 6 H 5 ) 3 Sb in coordinating solvents. The MnAs x Sb 1− x particles are spherical in morphology with average diameters 10–13 nm (standard deviations <20% based on transmission electron microscopy analysis). X-Ray fluorescence spectroscopy measurements on ensembles showed that all phases had an excess of Sb relative to the targeted composition, whereas energy dispersive spectroscopic mapping data of single particles revealed that the nanoparticles are inhomogeneous, adopting a core–shell structure, with the amorphous shell rich in Mn and O (and sometimes Sb) while the crystalline core is rich in Mn, As, and Sb. Magnetization measurements of the nanoparticle ensemble demonstrated the presence of both ferromagnetic and paramagnetic phases. By combining the magnetization measurements with precision chemical mapping and simple modeling, we were able to unambiguously attribute ferromagnetism to the MnAs x Sb 1− x crystalline core, whereas paramagnetism was attributed to the amorphous shell. Magnetization measurements at variable temperatures were used to determine the superparamagnetic transition of the nanoparticles, although for some compositions and particle sizes the blocking temperature exceeded room temperature. Preliminary magnetic studies also revealed a conventional dependence between core size and coercivity, in spite of variable compositions of the nanoparticles, an unexpected result. 
    more » « less
  3. Abstract

    Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5–45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due to the interaction of the propagating light in the evanescent field with glucose molecules. The coating of the TOF with gold nanoparticles (AuNPs) as an active layer for glucose sensing generated LSPR through the interaction of the evanescent wave with AuNPs deposited at the tapered waist. The results indicated that the TOF (Ø = 5 µm) exhibited improved sensing performance with a sensitivity of 1265%/RIU compared to the TOF (Ø = 12 µm) at 560%/RIU towards glucose. The AuNPs were characterized using scanning electron microscopy and ultraviolent-visible spectroscopy. The AuNPs-decorated TOF (Ø = 12 µm) demonstrated a high sensitivity of 2032%/RIU toward glucose. The AuNPs-decorated TOF sensor showed a sensitivity enhancement of nearly 4 times over TOF (Ø = 12 µm) with RI ranging from 1.328 to 1.393. The fabricated TOF enabled ultrasensitive glucose detection with good stability and fast response that may lead to next-generation ultrasensitive biosensors for real-world applications, such as disease diagnosis.

    more » « less
  4. Abstract Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coating on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 °C and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H 2 O 2 ). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes. These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance. 
    more » « less
  5. Heterogeneous hydroxyl radical (•OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition. It was recently demonstrated that heterogeneous •OH oxidation can age single-component particulate methyltetrol sulfates (MTSs), causing ∼55% of the SOA mass loss. However, our most recent study of freshly generated IEPOX-SOA particulate mixtures suggests that the lifetime of the complete IEPOX-SOA mixture against heterogeneous •OH oxidation can be prolonged through the fragmentation of higher-order oligomers. Published studies suggest that the heterogeneous •OH oxidation of IEPOX SOA could affect the organic atmospheric aerosol budget at varying rates, depending on aerosol chemical composition. However, heterogeneous •OH oxidation kinetics for the full IEPOX-SOA particulate mixture have not been reported. Here, we exposed freshly generated IEPOX-SOA particles to heterogeneous oxidation by •OH under humid conditions (relative humidity ∼57%) for 0−15 atmospheric-equivalent days of aging and derived an effective heterogeneous •OH rate coefficient (kOH) of 2.64 ± 0.4 × 10−13 cm^3 molecules−1 s−1. While ∼44% of particulate organic mass of nonoxidized IEPOX-SOA was consumed over the entire 15 day aging period, only <7% was consumed during the initial 10 aging days. By molecular-level chemical analysis, we determined oligomers were consumed at a faster rate (by a factor of 2−4) than monomers. Analysis of aerosol physicochemical properties shows that IEPOX-SOA has a core−shell morphology, and the shell becomes thinner with •OH oxidation. In summary, this study demonstrates that heterogeneous •OH oxidation of IEPOX-SOA particles is a dynamic process in which aerosol chemical composition and physicochemical properties play important roles. 
    more » « less