Osteoglossid bonytongues (arapaimas, arowanas, and relatives) are extant tropical freshwater fishes with a relatively abundant and diverse fossil record. Most osteoglossid fossils come from a 25-million-year interval in the early Palaeogene, when these fishes were distributed worldwide in both freshwater and marine environments. Despite their biogeographic and palaeoecological relevance, and a relative abundance of well-preserved material, the evolutionary relationships between these Palaeogene forms and extant bonytongues remain unclear. Here we describe a new genus of bonytongue from early Eocene marine deposits of Morocco, represented by an articulated, three-dimensionally preserved skull with associated pectoral girdle. This taxon is characterized by an elongated snout, contrasting with the short jaws usually found in marine representatives of the clade. A revision of morphological characters in bonytongues allows us to place this new genus, together with other marine and freshwater Eocene taxa, within crown osteoglossids and closely related to extant arapaimines. The discovery of the new Moroccan taxon hints at a previously underestimated eco-morphological diversity of marine bonytongues, highlighting the diverse trophic niches that these fishes occupied in early Palaeogene seas.
more »
« less
The Cretaceous–Paleogene transition in spiny-rayed fishes: surveying “Patterson’s Gap” in the acanthomorph skeletal record
In contrast to the rich collections of articulated spiny-rayed fishes from early Late Cretaceous and Eocene Lagerstätten, similar skeletal remains are sparse in Maastrichtian–Paleocene strata. Here we coin this poorly understood span “Patterson’s Gap” and review known articulated skeletons from it, summarizing available information on their phylogenetic affinities, age, and environmental context. Roughly fifty percent of taxa in both the Maastrichtian and Paleocene come from Europe and North America, with percomorphs representing around 60% of the skeletal acanthomorph taxa in each interval. This is higher than the only pre-Maastrichtian assemblage with a reasonable sample of percomorphs, but lower than most Eocene and younger sites. Fossils from Patterson’s Gap show a steady accumulation of the principal lineages of spiny-rayed fishes. Material from Paleocene or older strata provides evidence for most of the roughly 20 major acanthomorph divisions recovered by molecular studies. Many fossils from Patterson’s Gap remain undescribed and unnamed, and almost none have been included within formal phylogenetic analyses. Revision of existing material, combined with additional fieldwork, should be a priority for future efforts seeking to clarify this murky but significant interval in the evolutionary history of a major vertebrate radiation.
more »
« less
- Award ID(s):
- 2017822
- PAR ID:
- 10434129
- Date Published:
- Journal Name:
- Geologica Belgica
- Volume:
- 26
- Issue:
- 1-2
- ISSN:
- 1374-8505
- Page Range / eLocation ID:
- 1 to 23
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The end-Cretaceous mass extinction, 66 million years ago, profoundly reshaped the biodiversity of our planet. After likely originating in the Cretaceous, placental mammals (species giving live birth to well-developed young) survived the extinction and quickly diversified in the ensuing Paleocene. Compared to Mesozoic species, extant placentals have advanced neurosensory abilities, enabled by a proportionally large brain with an expanded neocortex. This brain construction was acquired by the Eocene, but its origins, and how its evolution relates to extinction survivorship and recovery, are unclear, because little is known about the neurosensory systems of Paleocene species. We used high-resolution computed tomography (CT) scanning to build digital brain models in 29 extinct placentals (including 23 from the Paleocene). We added these to data from the literature to construct a database of 98 taxa, from the Jurassic to the Eocene, which we assessed in a phylogenetic context. We find that the Phylogenetic Encephalization Quotient (PEQ), a measure of relative brain size, increased in the Cretaceous along branches leading to Placentalia, but then decreased in Paleocene clades (taeniodonts,phenacodontids, pantodonts, periptychids, and arctocyonids). Later, during the Eocene, the PEQ increased independently in all crown groups (e.g., euarchontoglirans and laurasiatherians). The Paleocene decline in PEQ was driven by body mass increasing much more rapidly after the extinction than brain volume. The neocortex remained small, relative to the rest of the brain, in Paleocene taxa and expanded independently in Eocene crown groups. The relative size of the olfactory bulbs, however, remained relatively stable over time, except for a major decrease in Euarchontoglires and some Eocene artiodactyls, while the petrosal lobules (associated with eye movement coordination) decreased in size in Laurasiatheria but increased in Euarchontoglires. Our results indicate that an enlarged, modern-style brain was not instrumental to the survival of placental mammal ancestors at the end-Cretaceous, nor to their radiation in the Paleocene. Instead, opening of new ecological niches post-extinction promoted the diversification of larger body sizes, while brain and neocortex sizes lagged behind. The independent increase in PEQ in Eocene crown groups is related to the expansion of the neocortex, possibly a response to ecological specialization as environments changed, long after the extinction.more » « less
-
Abstract For centuries, fossils from the Maastrichtian type locality and adjacent quarries have provided key evidence of vertebrate diversity during the latest Cretaceous, yet until recently the Maastrichtian type area had revealed no important insights into the evolutionary history of birds, one of the world’s most conspicuous groups of extant tetrapods. With the benefit of high-resolution micro-CT scanning, two important avian fossils from the Maastrichtian type area have now been examined in detail, offering profound, complementary insights into the evolutionary history of birds. The holotype specimens of these new taxa,Janavis finalidensBenito, Kuo, Widrig, Jagt and Field, 2022, andAsteriornis maastrichtensisField, Benito, Chen, Jagt and Ksepka, 2020, were originally collected in the late 1990s, but were only investigated in detail more than twenty years later. Collectively,JanavisandAsteriornisprovide some of the best evidence worldwide regarding the factors that influenced stem bird extinction and crown bird survivorship through the Cretaceous-Palaeogene transition, as well as insights into the origins of key anatomical features of birds such as an extensively pneumatised postcranial skeleton, a kinetic palate, and a toothless beak.Asteriornisalso provides scarce evidence of a Cretaceous-aged divergence time calibration within the avian crown group, while together,JanavisandAsteriornisconstitute the only documented co-occurrence of crown birds and non-neornithine avialans. Here, we review key insights into avian evolutionary history provided by these discoveries from the Maastrichtian stratotype, document undescribed and newly discovered Maastrichtian fossils potentially attributable to Avialae and provide the first histological data for the holotype ofAsteriornis, illustrating its skeletal maturity at the time of its death.more » « less
-
Paleocene-Eocene hyperthermals are viewed as some of the best ancient analogs for projected future anthropogenic climate change. In order to fully evaluate the magnitude of these climactic perturbations, however, a more complete understanding of prevailing background conditions is necessary. The Mississippi Embayment, a major southwest-dipping sedimentary basin in the Gulf of Mexico coastal region of North America, contains an extensive record of Paleocene strata deposited prior to the onset of the Paleocene Carbon Isotope Maximum (PCIM), a gradual warming trend upon which the Paleocene-Eocene Thermal Maximum (PETM) was superimposed. In order to evaluate pre-PCIM paleoclimate, we focus on paleosols in the Upper Paleocene Naheola Formation. A continuous section of the Naheola is available in archival core collected by Mississippi Minerals Resources Institute from Tippah County, Mississippi, USA. We performed a suite of initial core description methods, including logging of visual observations (e.g., grain size and Munsell colors), gamma density, magnetic susceptibility, smear slide analysis, and scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS). Results indicate a > 8-m-thick interval of 5 stacked paleosols associated with 4 lignite seams. The paleosols range in thickness from 0.6 m to 1.9 m, while the lignite seams range in thickness from 0.3 m to 1.3 m. Paleosols are characterized by low chroma matrix colors, mottling, and abundant carbonized roots. The thickest paleosols each exhibit an interval that coarsens and then fines upward; these are likely composite paleosols. Applying SEM-EDS results from all paleosols to the chemical index of alteration minus potash (CIA-K) yields preliminary mean annual precipitation estimates between 1200 and 1300 mm. The oldest paleosol contains abundant kaolinite and future stable isotope analysis will be used to reconstruct paleotemperature. Ongoing work will evaluate the relative influence of each of the five soil-forming factors on Naheola paleosol development and reexamine Paleocene- Eocene hyperthermals within the context of our results. Future work will include pollen analysis to improve chronostratigraphic control and evaluate paleoecological response to the Paleocene- Eocene climate change.more » « less
-
Abstract Actinopterygii is a major extant vertebrate group, but limited data are available for its earliest members. Here we investigate the morphology of Devonian actinopterygians, focusing on the lower jaw. We use X‐ray computed tomography (XCT) to provide comprehensive descriptions of the mandibles of 19 species, which span the whole of the Devonian and represent roughly two‐thirds of all taxa known from more than isolated or fragmentary material. Our findings corroborate previous reports in part but reveal considerable new anatomical data and represent the first detailed description for roughly half of these taxa. The mandibles display substantial variation in size, spanning more than an order of magnitude. Although most conform to a generalized pattern of a large dentary and one or two smaller infradentaries, XCT data reveal significant differences in the structure of the jaw and arrangement of teeth that may be of functional relevance. We report the presence of a rudimentary coronoid process in several taxa, contributed to by the dentary and/or infradentaries, as well a raised articular region, resulting in a mandible with an offset bite and that functions as a bent level arm. Among the most striking variation is that of tooth morphology: several taxa have heterodont dentary teeth that vary in size and orientation, and multiple variations on enlarged, whorl‐like and posteriorly‐oriented anterior coronoid dentition are observed. We use these new data to revise morphological characters that may be of phylogenetic significance and consider the possible functional implicationds of these traits. The observed variation in mandible form and structure suggests previously unappreciated functional diversity among otherwise morphologically homogenous Devonian ray‐finned fishes.more » « less
An official website of the United States government

