Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI- assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the “black-box” nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them.
more »
« less
Modeling Human Trust and Reliance in AI-Assisted Decision Making: A Markovian Approach
The increased integration of artificial intelligence (AI) technologies in human workflows has resulted in a new paradigm of AI-assisted decision making,in which an AI model provides decision recommendations while humans make the final decisions. To best support humans in decision making, it is critical to obtain a quantitative understanding of how humans interact with and rely on AI. Previous studies often model humans' reliance on AI as an analytical process, i.e., reliance decisions are made based on cost-benefit analysis. However, theoretical models in psychology suggest that the reliance decisions can often be driven by emotions like humans' trust in AI models. In this paper, we propose a hidden Markov model to capture the affective process underlying the human-AI interaction in AI-assisted decision making, by characterizing how decision makers adjust their trust in AI over time and make reliance decisions based on their trust. Evaluations on real human behavior data collected from human-subject experiments show that the proposed model outperforms various baselines in accurately predicting humans' reliance behavior in AI-assisted decision making. Based on the proposed model, we further provide insights into how humans' trust and reliance dynamics in AI-assisted decision making is influenced by contextual factors like decision stakes and their interaction experiences.
more »
« less
- Award ID(s):
- 1850335
- PAR ID:
- 10434200
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 37
- Issue:
- 5
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 6056 to 6064
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI-assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the black-box'' nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them.more » « less
-
Abstract AI assistance is readily available to humans in a variety of decision-making applications. In order to fully understand the efficacy of such joint decision-making, it is important to first understand the human’s reliance on AI. However, there is a disconnect between how joint decision-making is studied and how it is practiced in the real world. More often than not, researchers ask humans to provide independent decisions before they are shown AI assistance. This is done to make explicit the influence of AI assistance on the human’s decision. We develop a cognitive model that allows us to infer thelatentreliance strategy of humans on AI assistance without asking the human to make an independent decision. We validate the model’s predictions through two behavioral experiments. The first experiment follows aconcurrentparadigm where humans are shown AI assistance alongside the decision problem. The second experiment follows asequentialparadigm where humans provide an independent judgment on a decision problem before AI assistance is made available. The model’s predicted reliance strategies closely track the strategies employed by humans in the two experimental paradigms. Our model provides a principled way to infer reliance on AI-assistance and may be used to expand the scope of investigation on human-AI collaboration.more » « less
-
The use of AI-based decision aids in diverse domains has inspired many empirical investigations into how AI models’ decision recommendations impact humans’ decision accuracy in AI-assisted decision making, while explorations on the impacts on humans’ decision fairness are largely lacking despite their clear importance. In this paper, using a real-world business decision making scenario—bidding in rental housing markets—as our testbed, we present an experimental study on understanding how the bias level of the AI-based decision aid as well as the provision of AI explanations affect the fairness level of humans’ decisions, both during and after their usage of the decision aid. Our results suggest that when people are assisted by an AI-based decision aid, both the higher level of racial biases the decision aid exhibits and surprisingly, the presence of AI explanations, result in more unfair human decisions across racial groups. Moreover, these impacts are partly made through triggering humans’ “disparate interactions” with AI. However, regardless of the AI bias level and the presence of AI explanations, when people return to make independent decisions after their usage of the AI-based decision aid, their decisions no longer exhibit significant unfairness across racial groups.more » « less
-
AI-assisted decision-making systems hold immense potential to enhance human judgment, but their effectiveness is often hindered by a lack of understanding of the diverse ways in which humans take AI recommendations. Current research frequently relies on simplified, ``one-size-fits-all'' models to characterize an average human decision-maker, thus failing to capture the heterogeneity of people's decision-making behavior when incorporating AI assistance. To address this, we propose Mix and Match (M&M), a novel computational framework that explicitly models the diversity of human decision-makers and their unique patterns of relying on AI assistance. M&M represents the population of decision-makers as a mixture of distinct decision-making processes, with each process corresponding to a specific type of decision-maker. This approach enables us to infer latent behavioral patterns from limited data of human decisions under AI assistance, offering valuable insights into the cognitive processes underlying human-AI collaboration. Using real-world behavioral data, our empirical evaluation demonstrates that M&M consistently outperforms baseline methods in predicting human decision behavior. Furthermore, through a detailed analysis of the decision-maker types identified in our framework, we provide quantitative insights into nuanced patterns of how different individuals adopt AI recommendations. These findings offer implications for designing personalized and effective AI systems based on the diverse landscape of human behavior patterns in AI-assisted decision-making across various domains.more » « less