skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Platform-independent and curriculum-oriented intelligent assistant for higher education
Abstract Miscommunication between instructors and students is a significant obstacle to post-secondary learning. Students may skip office hours due to insecurities or scheduling conflicts, which can lead to missed opportunities for questions. To support self-paced learning and encourage creative thinking skills, academic institutions must redefine their approach to education by offering flexible educational pathways that recognize continuous learning. To this end, we developed an AI-augmented intelligent educational assistance framework based on a powerful language model (i.e., GPT-3) that automatically generates course-specific intelligent assistants regardless of discipline or academic level. The virtual intelligent teaching assistant (TA) system, which is at the core of our framework, serves as a voice-enabled helper capable of answering a wide range of course-specific questions, from curriculum to logistics and course policies. By providing students with easy access to this information, the virtual TA can help to improve engagement and reduce barriers to learning. At the same time, it can also help to reduce the logistical workload for instructors and TAs, freeing up their time to focus on other aspects of teaching and supporting students. Its GPT-3-based knowledge discovery component and the generalized system architecture are presented accompanied by a methodical evaluation of the system’s accuracy and performance.  more » « less
Award ID(s):
2230710
PAR ID:
10434211
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
International Journal of Educational Technology in Higher Education
Volume:
20
Issue:
1
ISSN:
2365-9440
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The recent public releases of AI tools such as ChatGPT have forced computer science educators to reconsider how they teach. These tools have demonstrated considerable ability to generate code and answer conceptual questions, rendering them incredibly useful for completing CS coursework. While overreliance on AI tools could hinder students’ learning, we believe they have the potential to be a helpful resource for both students and instructors alike. We propose a novel system for instructor-mediated GPT interaction in a class discussion board. By automatically generating draft responses to student forum posts, GPT can help Teaching Assistants (TAs) respond to student questions in a more timely manner, giving students an avenue to receive fast, quality feedback on their solutions without turning to ChatGPT directly. Additionally, since they are involved in the process, instructors can ensure that the information students receive is accurate, and can provide students with incremental hints that encourage them to engage critically with the material, rather than just copying an AI-generated snippet of code. We utilize Piazza—a popular educational forum where TAs help students via text exchanges—as a venue for GPT-assisted TA responses to student questions. These student questions are sent to GPT-4 alongside assignment instructions and a customizable prompt, both of which are stored in editable instructor-only Piazza posts. We demonstrate an initial implementation of this system, and provide examples of student questions that highlight its benefits. 
    more » « less
  2. There have been many questions and concerns raised by educators about how advanced technology students will adapt to remote learning during the COVID era. What will technician students’ academic engagement and persistence be like, and how will online learning affect their educational outcomes? What do technician students like about remote learning and what do they find challenging? What does online learning mean for hands-on applied and experiential learning, which are hallmarks of technical education programs? This paper explores pilot survey data collected in Florida from advanced technology students at two-year colleges. Five primary areas covered in the survey include enrollment status, access to technology, experience using a Learning Management System and learning online, impact on applied and experiential learning, and students’ background information. Key findings include decreased interaction between peers, increased reliance on instructors, and a significant decline in experiential learning such as labs, group projects, demonstrations, problem-based learning, and service-learning. The majority of students report feeling worried about making progress toward their degree, and about half worried about completing the semester. Two benefits students identified as having access to course materials all the time through the LMS and the flexibility of remote learning. Findings also show that technician students are quite diverse by way of age, partner status, having a family, race-ethnicity, employment status, and educational background. About one-third of students who responded are women. This paper concludes with several recommendations about the application of these research findings to address challenges technician students face learning online, including specific actions that instructors and programs can pursue to help retain students and provide support through the completion of degree programs. 
    more » « less
  3. As computing courses become larger, students of minoritized groups continue to disproportionately face challenges that hinder their academic and professional success (e.g. implicit bias, microaggressions, lack of resources, assumptions of preparatory privilege). This can impact career aspirations and sense of belonging in computing communities. Instructors have the power to make immediate changes to support more equitable learning, but they are often unaware of students' challenges. To help both instructors and students understand the inequities in their classes, we developed StudentAmp, an interactive system that uses student feedback and self-reported demographic information (e.g. gender, ethnicity, disability, educational background) to show challenges and how they affect students differently. To help instructors make sense of feedback, StudentAmp ranks challenges by student-perceived disruptiveness. We conducted formative evaluations with five large college computing courses (150 - 750 students) being taught remotely during the COVID-19 pandemic. We found that students shared challenges beyond the scope of the course, perceived sharing information about who they were as useful but potentially dangerous, and that teaching teams were able to use this information to consider the positionality of students sharing challenges. Our findings relate to a central design tension of supporting equity by sharing contextualized information about students while also ensuring their privacy and well-being. 
    more » « less
  4. The CUAHSI Virtual University is an interinstitutional graduate training framework that was developed to increase access to specialized hydrology courses for graduate students from participating US institutions. The program was designed to capitalize on the benefits of collaborative teaching, allowing students to differentiate their learning and access subject matter experts at multiple institutions, while enrolled in a single course at their home institution, through a framework of reciprocity. Although the CUAHSI Virtual University was developed prior to the COVID-19 pandemic, the resilience of its online education model to such disruptions to classroom teaching increases the urgency of understanding how effective such an approach is at achieving its goals and what challenges multi-institutional graduate training faces for sustainability and expansion within the water sciences or in other disciplines. To gain faculty perspectives on the program, we surveyed (1) water science graduate program faculty who had served as instructors in the program, (2) water science graduate program faculty who were aware of the program, but had not participated, and (3) departmental chairs of participating instructors. Our data show widespread agreement across respondent types that the program is positive for students, diversifying their educational opportunities and increasing access to subject matter experts. Concerns and factors limiting faculty involvement revolved around faculty workload and administrative barriers, including low enrollment at individual institutions. If these barriers can be surmounted, the CUAHSI Virtual University has the potential for wider participation within hydrology and adoption in other STEM disciplines. 
    more » « less
  5. This research evaluates the impact of switching college engineering courses from in-person instruction to emergency remote learning among engineering students at a university in the Midwest. The study aimed to answer the question: What were the concerns and perceived challenges students faced when traditional in-person engineering courses suddenly transitioned to remote learning? The goal of this study is to uncover the challenges students were facing in engineering online courses and to understand students’ concerns. Our findings can help improve teaching instruction to provide students with previously unavailable educational assistance for online engineering courses. We collected online survey responses during weeks 8 and 9 of the academic semester, shortly after the COVID-19 shutdown and emergency transition to remote learning in Spring 2020. The survey included two open-ended questions which inquired about students’ feedback about moving the class online, and one two-item scale which assessed students’ confidence in online engineering learning. Data analysis for the open-ended questions was guided by the theoretical framework - Social Cognitive Career Theory [1] that explores how context, person factors and social cognitions contribute to career goals, interests and actions. A phenomenological approach [2] was conducted to understand the experience of these students. Open coding and axial coding [2] methods were used to create initial categories then themes related to students' concerns and challenges. Data from the two-item scale was evaluated using descriptive statistics: means, standard deviations, and ranges. Four main themes with separate sub-categories emerged from the student responses: 1) Instructor’s ability to teach course online (Instructional limitations, Seeking help, Increased Workload), 2) Student’s ability to learn online (Time Management, Lower engagement and motivation, Harder to absorb material, Hard to focus, Worry about performance), 3) Difficulties outside of class (Technology issues), and 4) No concerns. Students seemed more concerned about their ability to learn the material (48% of responses) than the instructor’s ability to teach the material (36% of responses). The instructional limitations or lack of instructional support (22% of responses) and time management (12% of responses) were among the major concerns in the sub-categories. The results from two-item scale indicated participants' s confidence in their ability to master their classroom knowledge was at an intermediate level via online instruction (6/10), and participants' confidence in the instructor's ability to teach knowledge in online classes is moderate to high (7/10). The results align with the open-ended question response in which students were somewhat more concerned about their ability to learn than the instructor’s ability to teach. The themes and analysis will be a valuable tool to help institutions and instructors improve student learning experiences. 
    more » « less