skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: From disks to channels: dynamics of active nematics confined to an annulus
Confinement can be used to systematically tame turbulent dynamics occurring in active fluids. Although periodic channels are the simplest geometries to study confinement numerically, the corresponding experimental realizations require closed racetracks. Here, we computationally study 2D active nematics confined to such a geometry—an annulus. By systematically varying the annulus inner radius and channel width, we bridge the behaviors observed in the previously studied asymptotic limits of the annulus geometry: a disk and an infinite channel. We identify new steady-state behaviors, which reveal the influence of boundary curvature and its interplay with confinement. We also show that, below a threshold inner radius, the dynamics are insensitive to the presence of the inner hole. We explain this insensitivity through a simple scaling analysis. Our work sheds further light on design principles for using confinement to control the dynamics of active nematics.  more » « less
Award ID(s):
2202353 1855914
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Flow of a semidilute neutrally buoyant and non-colloidal suspension is numerically studied in the Taylor–Couette geometry where the inner cylinder is rotating and the outer one is stationary. We consider a suspension with bulk particle volume fraction ${\phi _b} = 0.1$ , the radius ratio $(\eta = {r_i}/{r_o} = 0.877)$ and two particle size ratios $\mathrm{\epsilon }\,( = \; d\textrm{/}a) = 60,\;200$ , where d is the gap width ( $= {r_o} - {r_i}$ ) between cylinders, a is the suspended particles’ radius and $r_i$ and $r_o$ are the inner and outer radii of the cylinder, respectively. Numerical simulations are conducted using the suspension balance model (SBM) and rheological constitutive laws. We predict the critical Reynolds number in which counter-rotating vortices arise in the annulus. It turns out that the primary instability appears through a supercritical bifurcation. For the suspension of $\mathrm{\epsilon } = 200$ , the circular Couette flow (CCF) transitions via Taylor vortex flow (TVF) to wavy vortex flow (WVF). Additional flow states of non-axisymmetric vortices, namely spiral vortex flow (SVF) and wavy spiral vortex flow (WSVF) are observed between CCF and WVF for the suspension of $\mathrm{\epsilon } = 60$ ; thus, the transitions occur following the sequence of CCF → SVF → WSVF → WVF. Furthermore, we estimate the friction and torque coefficients of the suspension. Suspended particles substantially enhance the torque on the inner cylinder, and the axial travelling wave of spiral vortices reduces the friction and torque coefficients. However, the coefficients are practically the same in the WVF regime where particles are almost uniformly distributed in the annulus by the axial oscillating flow. 
    more » « less
  2. We study how confinement transforms the chaotic dynamics of bulk microtubule-based active nematics into regular spatiotemporal patterns. For weak confinements in disks, multiple continuously nucleating and annihilating topological defects self-organize into persistent circular flows of either handedness. Increasing confinement strength leads to the emergence of distinct dynamics, in which the slow periodic nucleation of topological defects at the boundary is superimposed onto a fast procession of a pair of defects. A defect pair migrates toward the confinement core over multiple rotation cycles, while the associated nematic director field evolves from a distinct double spiral toward a nearly circularly symmetric configuration. The collapse of the defect orbits is punctuated by another boundary-localized nucleation event, that sets up long-term doubly periodic dynamics. Comparing experimental data to a theoretical model of an active nematic reveals that theory captures the fast procession of a pair of+1/2defects, but not the slow spiral transformation nor the periodic nucleation of defect pairs. Theory also fails to predict the emergence of circular flows in the weak confinement regime. The developed confinement methods are generalized to more complex geometries, providing a robust microfluidic platform for rationally engineering 2D autonomous flows.

    more » « less
  3. Spontaneous growth of long-wavelength deformations is a defining feature of active liquid crystals. We investigate the effect of confinement on the instability of 3D active liquid crystals in the isotropic phase composed of extensile microtubule bundles and kinesin molecular motors. When shear aligned, such fluids exhibit finite-wavelength self-amplifying bend deformations. By systematically changing the channel size we elucidate how the instability wavelength and its growth rate depend on the channel dimensions. Experimental findings are qualitatively consistent with a minimal hydrodynamic model, where the fastest growing deformation is set by a balance of active driving and elastic relaxation. Our results demonstrate that confinement determines the structure and dynamics of active fluids on all experimentally accessible length scales. 
    more » « less
  4. Abstract

    Galactic outflows from local starburst galaxies typically exhibit a layered geometry, with cool 104K flow sheathing a hotter 107K, cylindrically collimated, X-ray-emitting plasma. Here we argue that winds driven by energy injection in a ring-like geometry can produce this distinctive large-scale multiphase morphology. The ring configuration is motivated by the observation that massive young star clusters are often distributed in a ring at the host galaxy’s inner Lindblad resonance, where larger-scale spiral arm structure terminates. We present parameterized three-dimensional radiative hydrodynamical simulations that follow the emergence and dynamics of energy-driven hot winds from starburst rings. In this letter, we show that the flow shocks on itself within the inner ring hole, maintaining high 107K temperatures, while flows that emerge from the wind-driving ring unobstructed can undergo rapid bulk cooling down to 104K, producing a fast hot biconical outflow enclosed by a sheath of cooler nearly comoving material without ram pressure acceleration. The hot flow is collimated along the ring axis, even in the absence of pressure confinement from a galactic disk or magnetic fields. In the early stages of expansion, the emerging wind forms a bubble-like shape reminiscent of the Milky Way’s eROSITA and Fermi bubbles and can reach velocities usually associated with active-galactic-nucleus-driven winds. We discuss the physics of the ring configuration, the conditions for radiative bulk cooling, and the implications for future X-ray observations.

    more » « less
  5. null (Ed.)
    Background Cardiovascular disease (CVD) disparities are a particularly devastating manifestation of health inequity. Despite advancements in prevention and treatment, CVD is still the leading cause of death in the United States. Additionally, research indicates that African American (AA) and other ethnic-minority populations are affected by CVD at earlier ages than white Americans. Given that AAs are the fastest-growing population of smartphone owners and users, mobile health (mHealth) technologies offer the unparalleled potential to prevent or improve self-management of chronic disease among this population. Objective To address the unmet need for culturally tailored primordial prevention CVD–focused mHealth interventions, the MOYO app was cocreated with the involvement of young people from this priority community. The overall project aims to develop and evaluate the effectiveness of a novel smartphone app designed to reduce CVD risk factors among urban-AAs, 18-29 years of age. Methods The theoretical underpinning will combine the principles of community-based participatory research and the agile software development framework. The primary outcome goals of the study will be to determine the usability, acceptability, and functionality of the MOYO app, and to build a cloud-based data collection infrastructure suitable for digital epidemiology in a disparity population. Changes in health-related parameters over a 24-week period as determined by both passive (eg, physical activity levels, sleep duration, social networking) and active (eg, use of mood measures, surveys, uploading pictures of meals and blood pressure readings) measures will be the secondary outcome. Participants will be recruited from a majority AA “large city” school district, 2 historically black colleges or universities, and 1 urban undergraduate college. Following baseline screening for inclusion (administered in person), participants will receive the beta version of the MOYO app. Participants will be monitored during a 24-week pilot period. Analyses of varying data including social network dynamics, standard metrics of activity, percentage of time away from a given radius of home, circadian rhythm metrics, and proxies for sleep will be performed. Together with external variables (eg, weather, pollution, and socioeconomic indicators such as food access), these metrics will be used to train machine-learning frameworks to regress them on the self-reported quality of life indicators. Results This 5-year study (2015-2020) is currently in the implementation phase. We believe that MOYO can build upon findings of classical epidemiology and longitudinal studies like the Jackson Heart Study by adding greater granularity to our knowledge of the exposures and behaviors that affect health and disease, and creating a channel for outreach capable of launching interventions, clinical trials, and enhancements of health literacy. Conclusions The results of this pilot will provide valuable information about community cocreation of mHealth programs, efficacious design features, and essential infrastructure for digital epidemiology among young AA adults. International Registered Report Identifier (IRRID) DERR1-10.2196/16699 
    more » « less