skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.

This content will become publicly available on June 1, 2024

Title: Polarimetry of hydrogen-poor superluminous supernovae
We present linear polarimetry for seven hydrogen-poor superluminous supernovae (SLSNe-I) of which only one has previously published polarimetric data. The best-studied event is SN 2017gci, for which we present two epochs of spectropolarimetry at +3 d and +29 d post-peak in rest frame, accompanied by four epochs of imaging polarimetry up to +108 d. The spectropolarimetry at +3 d shows increasing polarisation degree P towards the redder wavelengths and exhibits signs of axial symmetry, but at +29 d, P  ∼ 0 throughout the spectrum, implying that the photosphere of SN 2017gci evolved from a slightly aspherical configuration to a more spherical one in the first month post-peak. However, an increase of P to ∼0.5% at ∼ + 55 d accompanied by a different orientation of the axial symmetry compared to +3 d implies the presence of additional sources of polarisation at this phase. The increase in polarisation is possibly caused by interaction with circumstellar matter (CSM), as already suggested by a knee in the light curve and a possible detection of broad H α emission at the same phase. We also analysed the sample of all 16 SLSNe-I with polarimetric measurements to date. The data taken during the early spectroscopic phase show consistently low polarisation, indicating at least nearly spherical photospheres. No clear relation between the polarimetry and spectral phase was seen when the spectra resemble Type Ic SNe during the photospheric and nebular phases. The light-curve decline rate, which spans a factor of eight, also shows no clear relation with the polarisation properties. While only slow-evolving SLSNe-I have shown non-zero polarisation, the fast-evolving ones have not been observed at sufficiently late times to conclude that none of them exhibit changing P . However, the four SLSNe-I with increasing polarisation degree also have irregular light-curve declines. For up to half of them, the photometric, spectroscopic, and polarimetric properties are affected by CSM interaction. As such, CSM interaction clearly plays an important role in understanding the polarimetric evolution of SLSNe-I.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Detailed spectropolarimetric studies may hold the key to probing the explosion mechanisms and the progenitor scenarios of Type Ia supernovae (SNe Ia). We present multi-epoch spectropolarimetry and imaging polarimetry of SN 2019ein, an SN Ia showing high expansion velocities at early phases. The spectropolarimetry sequence spans from ∼−11 to +10 d relative to peak brightness in the B band. We find that the level of the continuum polarization of SN 2019ein, after subtracting estimated interstellar polarization, is in the range 0.0–0.3 per cent, typical for SNe Ia. The polarization position angle remains roughly constant before and after the SN light-curve peak, implying that the inner regions share the same axisymmetry as the outer layers. We observe high polarization (∼1 per cent) across both the Si ii λ6355 and Ca ii near-infrared triplet features. These two lines also display complex polarization modulations. The spectropolarimetric properties of SN 2019ein rule out a significant departure from spherical symmetry of the ejecta for up to a month after the explosion. These observations disfavour merger-induced and double-detonation models for SN 2019ein. The imaging polarimetry shows weak evidence for a modest increase in polarization after ∼20 d since the B-band maximum. If this rise is real and is observed in other SNe Ia at similar phases, we may have seen, for the first time, an aspherical interior similar to what has been previously observed for SNe IIP. Future polarization observations of SNe Ia extending to post-peak epochs will help to examine the inner structure of the explosion. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present and discuss the optical spectrophotometric observations of the nearby (z = 0.087) Type I superluminous supernova (SLSN I) SN 2017gci, whose peak K-corrected absolute magnitude reaches Mg = −21.5 mag. Its photometric and spectroscopic evolution includes features of both slow- and of fast-evolving SLSN I, thus favoring a continuum distribution between the two SLSN-I subclasses. In particular, similarly to other SLSNe I, the multiband light curves (LCs) of SN 2017gci show two re-brightenings at about 103 and 142 d after the maximum light. Interestingly, this broadly agrees with a broad emission feature emerging around 6520 Å after ∼51 d from the maximum light, which is followed by a sharp knee in the LC. If we interpret this feature as Hα, this could support the fact that the bumps are the signature of late interactions of the ejecta with a (hydrogen-rich) circumstellar material. Then we fitted magnetar- and CSM-interaction-powered synthetic LCs on to the bolometric one of SN 2017gci. In the magnetar case, the fit suggests a polar magnetic field Bp ≃ 6 × 1014 G, an initial period of the magnetar Pinitial ≃ 2.8 ms, an ejecta mass $M_{\rm ejecta}\simeq 9\, \mathrm{M}_\odot $ and an ejecta opacity $\kappa \simeq 0.08\, \mathrm{cm}^{2}\, \rm{g}^{-1}$. A CSM-interaction scenario would imply a CSM mass $\simeq 5\, \mathrm{M}_\odot $ and an ejecta mass $\simeq 12\, \mathrm{M}_\odot $. Finally, the nebular spectrum of phase  + 187 d was modeled, deriving a mass of $\sim 10\, {\rm M}_\odot$ for the ejecta. Our models suggest that either a magnetar or CSM interaction might be the power sources for SN 2017gci and that its progenitor was a massive ($40\, {\rm M}_\odot$) star. 
    more » « less
  3. null (Ed.)
    ABSTRACT The origin of the diverse light-curve shapes of Type II supernovae (SNe), and whether they come from similar or distinct progenitors, has been actively discussed for decades. Here, we report spectropolarimetry of two fast declining Type II (Type IIL) SNe: SN 2013ej and SN 2017ahn. SN 2013ej exhibited high continuum polarization from very soon after the explosion to the radioactive tail phase with time-variable polarization angles. The origin of this polarimetric behaviour can be interpreted as the combination of two different aspherical structures, namely an aspherical interaction of the SN ejecta with circumstellar matter (CSM) and an inherently aspherical explosion. Aspherical explosions are a common feature of slowly declining Type II (Type IIP) SNe. By contrast, SN 2017ahn showed low polarization not only in the photospheric phase but also in the radioactive tail phase. This low polarization in the tail phase, which has never before been observed in other Type IIP/L SNe, suggests that the explosion of SN 2017ahn was nearly spherical. These observations imply that Type IIL SNe have, at least, two different origins: they result from stars that have different explosion properties and/or different mass-loss processes. This fact might indicate that 13ej-like Type IIL SNe originate from a similar progenitor to those of Type IIP SNe accompanied by an aspherical CSM interaction, while 17ahn-like Type IIL SNe come from a more massive progenitor with less hydrogen in its envelope. 
    more » « less
  4. Context. SN 2020qlb (ZTF20abobpcb) is a hydrogen-poor superluminous supernova (SLSN-I) that is among the most luminous (maximum M g  = −22.25 mag) and that has one of the longest rise times (77 days from explosion to maximum). We estimate the total radiated energy to be > 2.1 × 10 51 erg. SN 2020qlb has a well-sampled light curve that exhibits clear near and post peak undulations, a phenomenon seen in other SLSNe, whose physical origin is still unknown. Aims. We discuss the potential power source of this immense explosion as well as the mechanisms behind its observed light curve undulations. Methods. We analyze photospheric spectra and compare them to other SLSNe-I. We constructed the bolometric light curve using photometry from a large data set of observations from the Zwicky Transient Facility (ZTF), Liverpool Telescope (LT), and Neil Gehrels Swift Observatory and compare it with radioactive, circumstellar interaction and magnetar models. Model residuals and light curve polynomial fit residuals are analyzed to estimate the undulation timescale and amplitude. We also determine host galaxy properties based on imaging and spectroscopy data, including a detection of the [O III] λ 4363, auroral line, allowing for a direct metallicity measurement. Results. We rule out the Arnett 56 Ni decay model for SN 2020qlb’s light curve due to unphysical parameter results. Our most favored power source is the magnetic dipole spin-down energy deposition of a magnetar. Two to three near peak oscillations, intriguingly similar to those of SN 2015bn, were found in the magnetar model residuals with a timescale of 32 ± 6 days and an amplitude of 6% of peak luminosity. We rule out centrally located undulation sources due to timescale considerations; and we favor the result of ejecta interactions with circumstellar material (CSM) density fluctuations as the source of the undulations. 
    more » « less
  5. null (Ed.)
    ABSTRACT ASASSN-18am/SN 2018gk is a newly discovered member of the rare group of luminous, hydrogen-rich supernovae (SNe) with a peak absolute magnitude of MV ≈ −20 mag that is in between normal core-collapse SNe and superluminous SNe. These SNe show no prominent spectroscopic signatures of ejecta interacting with circumstellar material (CSM), and their powering mechanism is debated. ASASSN-18am declines extremely rapidly for a Type II SN, with a photospheric-phase decline rate of ∼6.0 mag (100 d)−1. Owing to the weakening of H i and the appearance of He i in its later phases, ASASSN-18am is spectroscopically a Type IIb SN with a partially stripped envelope. However, its photometric and spectroscopic evolution shows significant differences from typical SNe IIb. Using a radiative diffusion model, we find that the light curve requires a high synthesized 56Ni mass $M_{\rm Ni} \sim 0.4\, \rm {M_{\odot }}$ and ejecta with high kinetic energy Ekin = (7–10) × 1051 erg. Introducing a magnetar central engine still requires $M_{\rm Ni} \sim 0.3\, \rm {M_{\odot }}$ and Ekin = 3 × 1051 erg. The high 56Ni mass is consistent with strong iron-group nebular lines in its spectra, which are also similar to several SNe Ic-BL with high 56Ni yields. The earliest spectrum shows ‘flash ionization’ features, from which we estimate a mass-loss rate of $\dot{M}\approx 2\times 10^{-4} \, \rm \rm {M_{\odot }}\,yr^{-1}$. This wind density is too low to power the luminous light curve by ejecta–CSM interaction. We measure expansion velocities as high as 17 000 $\rm {\, km\, s^{-1}}$ for Hα, which is remarkably high compared to other SNe II. We estimate an oxygen core mass of 1.8–3.4 M⊙ using the [O i] luminosity measured from a nebular-phase spectrum, implying a progenitor with a zero-age main-sequence mass of 19–26 M⊙. 
    more » « less