skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The HapConnect: Teaching about Haptics and Inclusive Design with Modular, Wearable Technology
In this paper, a learning module is introduced to teach undergraduate engineering students about the principles of haptics and inclusive design thinking through wearable technology. To that end, a novel wearable haptic (touch) device was created, referred to as the HapConnect, that contains modular vibration components for student teams to explore the use of haptics in a simple context, design and create their own versions of the device, and deploy it in a use-inspired setting. Through a series of lecture and hands-on design sessions, student teams were tasked with employing the HapConnect to navigate through a maze exclusively by the sense of touch. This paper evaluates student confidence in topics – such as haptics, human perception, wearable devices, and inclusive design – discussed throughout the module, feedback and performance of the HapConnect, and team design choices to complete their activity. Results indicate that student learning and confidence increased throughout the activity, while each team’s success in the maze was attributed to their differing design choices.  more » « less
Award ID(s):
1845490
PAR ID:
10434303
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Society for Engineering Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the last decade, extensive growth in digital educational content has opened up new opportunities for teaching and learning. Despite such advancements, digital learning experiences often omit one ofour richest and earliest learning modalities - touch. This lack of haptic (touch) interaction creates a growing gap in supporting inclusive, embodied learning experiences digitally. Our research centers on the development ofinclusive learning tools that can flexibly adapt for use in different learning contexts to support learners with a wide range of needs, co-designed with students with disabilities. In this paper, we focus on the development of a tangible device for geometry learning - the Tangible Manipulative for Quadrilaterals (TMQ). We detail the design evolution of the TMQ and present two user studies investigating the affordances o ft h eI M and the user strategies employed when explored in isolation and in tandem with a two-dimensional touchscreen-based rendering ofa quadrilateral. Findings illustrate the affordances of the I M Oo v e r traditional, static media and its ability to serve as an inclusive geometry learning tool. 
    more » « less
  2. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less
  3. This study investigated the effects of a team-based modeling intervention that implemented reflective practices to support students’ self-regulated learning in the context of modeling assignments. We used a mixed method design to answer the three research questions: (1) What metacognitive strategies do students, organized in teams, implement when solving computational modeling assignments? (2) What are students’ levels of performance in solving computational modeling assignments in teams? (3) What are the relationships between teams’ level of confidence and their implemented metacognitive strategies and level of performance in the computational modeling assignment? The learning intervention was guided by a reflective modeling practitioner model, bringing together modeling practices with elements of selfregulated learning. The results illustrate students’ levels of self-reported confidence in three levels, showing that from the twelve teams studied, seven reported an increase in confidence as the project progressed, three reported a decrease in their confidence, and two reported an initial struggle, but their confidence increased as they completed the assignment. The implications relate to the learning interventions in the team modeling activity that can influence the teams’ reported selfconfidence, which can impact the skills students acquire and the strategies they use when faced with challenges. 
    more » « less
  4. We describe a pedagogical study in which we designed and implemented a module for undergraduate Management Information Systems (MIS) students, aimed at preparing them for an increasingly AI-impacted business environment and society. We developed a learning module that taps their inherent motivation to make a meaningful difference, challenging them to ideate applications of AI for social good (AI4SG), focused specifically on sustainability. We piloted the module in an existing introductory MIS course, first establishing a range of fundamental AI capabilities through hands-on demos and study cases. Then, with instructor guidance, the student teams, working in a social entrepreneurship "start-up" context, identified sustainability challenges impacting their own communities and worked together to propose and pitch AI-powered solutions. The results suggest that students find this approach deepened their understanding of sustainability issues in their communities, improved their knowledge of how AI could address social issues, and improved their confidence in their ability to innovate. 
    more » « less
  5. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less