skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On The Stability of Approximate Message Passing with Independent Measurement Ensembles
Approximate message passing (AMP) is a scalable, iterative approach to signal recovery. For structured random measurement ensembles, including independent and identically distributed (i.i.d.) Gaussian and rotationally-invariant matrices, the performance of AMP can be characterized by a scalar recursion called state evolution (SE). The pseudo-Lipschitz (polynomial) smoothness is conventionally assumed. In this work, we extend the SE for AMP to a new class of measurement matrices with independent (not necessarily identically distributed) entries. We also extend it to a general class of functions, called controlled functions which are not constrained by the polynomial smoothness; unlike the pseudo-Lipschitz function that has polynomial smoothness, the controlled function grows exponentially. The lack of structure in the assumed measurement ensembles is addressed by leveraging Lindeberg-Feller. The lack of smoothness of the assumed controlled function is addressed by a proposed conditioning technique leveraging the empirical statistics of the AMP instances. The resultants grant the use of the SE to a broader class of measurement ensembles and a new class of functions.  more » « less
Award ID(s):
1955561 2212565 2225577
PAR ID:
10434347
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International Symposium on Information Theory
Page Range / eLocation ID:
1 - 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider m independent random rectangular matrices whose entries are independent and identically distributed standard complex Gaussian random variables. Assume the product of the m rectangular matrices is an n-by-n square matrix. The maximum absolute value of the n eigenvalues of the product matrix is called spectral radius. In this paper, we study the limiting spectral radii of the product when m changes with n and can even diverge. We give a complete description for the limiting distribution of the spectral radius. Our results reduce to those in Jiang and Qi (J Theor Probab 30(1):326–364, 2017) when the rectangular matrices are square. 
    more » « less
  2. Spatially distributed networks of large size arise in a variety of science and engineering problems, such as wireless sensor networks and smart power grids. Most of their features can be described by properties of their state-space matrices whose entries have indices in the vertex set of a graph. In this paper, we introduce novel algebras of Beurling type that contain matrices on a connected simple graph having polynomial off-diagonal decay, and we show that they are Banach subalgebras of the space of all bounded operators on the space of all p-summable sequences. The $$\ell^p$$-stability of state-space matrices is an essential hypothesis for the robustness of spatially distributed networks. In this paper, we establish the equivalence among -stabilities of matrices in Beurling algebras for different exponents $$p$$, with quantitative analysis for the lower stability bounds. Admission of norm-control inversion plays a crucial role in some engineering practice. In this paper, we prove that matrices in Beurling subalgebras of have norm-controlled inversion and we find a norm-controlled polynomial with close to optimal degree. Polynomial estimate to powers of matrices is important for numerical implementation of spatially distributed networks. In this paper, we apply our results on norm-controlled inversion to obtain a polynomial estimate to powers of matrices in Beurling algebras. The polynomial estimate is a noncommutative extension about convolution powers of a complex function and is applicable to estimate the probability of hopping from one agent to another agent in a stationary Markov chain on a spatially distributed network. 
    more » « less
  3. null (Ed.)
    Abstract We show that a nearly square independent and identically distributed random integral matrix is surjective over the integral lattice with very high probability. This answers a question by Koplewitz [6]. Our result extends to sparse matrices as well as to matrices of dependent entries. 
    more » « less
  4. We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-dimensional, stationary matrix-variate Gaussian time series. The correlation function of the matrix series is Kronecker-decomposable. Unlike most past work on matrix graphical models, where independent and identically distributed (i.i.d.) observations of matrix-variate are assumed to be available, we allow time-dependent observations. We follow a time-delay embedding approach where with each matrix node, we associate a random vector consisting of a scalar series component and its time-delayed copies. A group-lasso penalized negative pseudo log-likelihood (NPLL) objective function is formulated to estimate a Kronecker-decomposable covariance matrix which allows for inference of the underlying CIG. The NPLL function is bi-convex and the Kronecker-decomposable covariance matrix is estimated via flip-flop optimization of the NPLL function. Each iteration of flip-flop optimization is solved via an alternating direction method of multipliers (ADMM) approach. Numerical results illustrate the proposed approach which outperforms an existing i.i.d. modeling based approach as well as an existing frequency-domain approach for dependent data, in correctly detecting the graph edges. 
    more » « less
  5. We propose a unified framework to solve general low-rank plus sparse matrix recovery problems based on matrix factorization, which covers a broad family of objective functions satisfying the restricted strong convexity and smoothness conditions. Based on projected gradient descent and the double thresholding operator, our proposed generic algorithm is guaranteed to converge to the unknown low-rank and sparse matrices at a locally linear rate, while matching the best-known robustness guarantee (i.e., tolerance for sparsity). At the core of our theory is a novel structural Lipschitz gradient condition for low-rank plus sparse matrices, which is essential for proving the linear convergence rate of our algorithm, and we believe is of independent interest to prove fast rates for general superposition-structured models. We illustrate the application of our framework through two concrete examples: robust matrix sensing and robust PCA. Empirical experiments corroborate our theory. 
    more » « less