skip to main content


This content will become publicly available on July 1, 2024

Title: On The Stability of Approximate Message Passing with Independent Measurement Ensembles
Approximate message passing (AMP) is a scalable, iterative approach to signal recovery. For structured random measurement ensembles, including independent and identically distributed (i.i.d.) Gaussian and rotationally-invariant matrices, the performance of AMP can be characterized by a scalar recursion called state evolution (SE). The pseudo-Lipschitz (polynomial) smoothness is conventionally assumed. In this work, we extend the SE for AMP to a new class of measurement matrices with independent (not necessarily identically distributed) entries. We also extend it to a general class of functions, called controlled functions which are not constrained by the polynomial smoothness; unlike the pseudo-Lipschitz function that has polynomial smoothness, the controlled function grows exponentially. The lack of structure in the assumed measurement ensembles is addressed by leveraging Lindeberg-Feller. The lack of smoothness of the assumed controlled function is addressed by a proposed conditioning technique leveraging the empirical statistics of the AMP instances. The resultants grant the use of the SE to a broader class of measurement ensembles and a new class of functions.  more » « less
Award ID(s):
1955561 2212565 2225577
NSF-PAR ID:
10434347
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International Symposium on Information Theory
Page Range / eLocation ID:
1 - 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    We study the properties of points in [0,1]d generated by applying Hilbert's space filling curve to uniformly distributed points in [0, 1]. For deterministic sampling we obtain a discrepancy of O(n−1/d) for d⩾2. For random stratified sampling, and scrambled van der Corput points, we derive a mean-squared error of O(n−1−2/d) for integration of Lipschitz continuous integrands, when d⩾3. These rates are the same as those obtained by sampling on d-dimensional grids and they show a deterioration with increasing d. The rate for Lipschitz functions is, however, the best possible at that level of smoothness and is better than plain independent and identically distributed sampling. Unlike grids, space filling curve sampling provides points at any desired sample size, and the van der Corput version is extensible in n. We also introduce a class of piecewise Lipschitz functions whose discontinuities are in rectifiable sets described via Minkowski content. Although these functions may have infinite variation in the sense of Hardy and Krause, they can be integrated with a mean-squared error of O(n−1−1/d). It was previously known only that the rate was o(n−1). Other space filling curves, such as those due to Sierpinski and Peano, also attain these rates, whereas upper bounds for the Lebesgue curve are somewhat worse, as if the dimension were log2(3) times as high.

     
    more » « less
  2. The notion of timely status updating is investigated in the context of cloud computing. Measurements of a time-varying process of interest are acquired by a sensor node, and uploaded to a cloud server to undergo some required computations. These computations have random service times that are independent and identically distributed across different uploads. After the computations are done, the results are delivered to a monitor, constituting an update. The goal is to keep the monitor continuously fed with fresh updates over time, which is assessed by an age-of-information(AoI) metric. A scheduler is employed to optimize the measurement acquisition times. Following an update, an idle waiting period may be imposed by the scheduler before acquiring a new measurement. The scheduler also has the capability to preempt a measurement in progress if its service time grows above a certain cutoff time, and upload a fresher measurement in its place. Focusing on stationary deterministic policies, in which waiting times are deterministic functions of the instantaneous AoI and the cutoff time is fixed for all uploads, it is shown that the optimal waiting policy that minimizes the long term average AoI has a threshold structure, in which a new measurement is uploaded following an update only if the AoI grows above a certain threshold that is a function of the service time distribution and the cutoff time. The optimal cutoff is then found for standard and shifted exponential service times. While it has been previously reported that waiting before updating can be beneficial for AoI, it is shown in this work that preemption of late updates can be even more beneficial. 
    more » « less
  3. We propose a unified framework to solve general low-rank plus sparse matrix recovery problems based on matrix factorization, which covers a broad family of objective functions satisfying the restricted strong convexity and smoothness conditions. Based on projected gradient descent and the double thresholding operator, our proposed generic algorithm is guaranteed to converge to the unknown low-rank and sparse matrices at a locally linear rate, while matching the best-known robustness guarantee (i.e., tolerance for sparsity). At the core of our theory is a novel structural Lipschitz gradient condition for low-rank plus sparse matrices, which is essential for proving the linear convergence rate of our algorithm, and we believe is of independent interest to prove fast rates for general superposition-structured models. We illustrate the application of our framework through two concrete examples: robust matrix sensing and robust PCA. Empirical experiments corroborate our theory. 
    more » « less
  4. Abstract Using a result of Blanchet and Wallwater (2015) for exactly simulating the maximum of a negative drift random walk queue endowed with independent and identically distributed (i.i.d.) increments, we extend it to a multi-dimensional setting and then we give a new algorithm for simulating exactly the stationary distribution of a first-in–first-out (FIFO) multi-server queue in which the arrival process is a general renewal process and the service times are i.i.d.: the FIFO GI/GI/ c queue with $ 2 \leq c \lt \infty$ . Our method utilizes dominated coupling from the past (DCFP) as well as the random assignment (RA) discipline, and complements the earlier work in which Poisson arrivals were assumed, such as the recent work of Connor and Kendall (2015). We also consider the models in continuous time, and show that with mild further assumptions, the exact simulation of those stationary distributions can also be achieved. We also give, using our FIFO algorithm, a new exact simulation algorithm for the stationary distribution of the infinite server case, the GI/GI/ $\infty$ model. Finally, we even show how to handle fork–join queues, in which each arriving customer brings c jobs, one for each server. 
    more » « less
  5. Beginning from the shallow water equations (SWEs), a nonlinear self-similar analytic solution is derived for barotropic flow over varying topography. We study conditions relevant to the ocean slope where the flow is dominated by Earth's rotation and topography. The solution is found to extend the topographic β-plume solution of Kuehl (2014) in two ways. (1) The solution is valid for intensifying jets. (2) The influence of nonlinear advection is included. The SWEs are scaled to the case of a topographically controlled jet, and then solved by introducing a similarity variable, η = cxnxyny. The nonlinear solution, valid for topographies h = h0 − αxy3, takes the form of the Lambert W-function for pseudo velocity. The linear solution, valid for topographies h = h0 − αxyγ, takes the form of the error function for transport. Kuehl's results considered the case −1 ≤ γ < 1 which admits expanding jets, while the new result considers the case γ < −1 which admits intensifying jets and a nonlinear case with γ = −3. 
    more » « less