skip to main content


This content will become publicly available on June 12, 2024

Title: The Many Faces of Fairness: Exploring the Institutional Logics of Multistakeholder Microlending Recommendation
Recommender systems have a variety of stakeholders. Applying concepts of fairness in such systems requires attention to stakeholders’ complex and often-conflicting needs. Since fairness is socially constructed, there are numerous definitions, both in the social science and machine learning literatures. Still, it is rare for machine learning researchers to develop their metrics in close consideration of their social context. More often, standard definitions are adopted and assumed to be applicable across contexts and stakeholders. Our research starts with a recommendation context and then seeks to understand the breadth of the fairness considerations of associated stakeholders. In this paper, we report on the results of a semi-structured interview study with 23 employees who work for the Kiva microlending platform. We characterize the many different ways in which they enact and strive toward fairness for microlending recommendations in their own work, uncover the ways in which these different enactments of fairness are in tension with each other, and identify how stakeholders are differentially prioritized. Finally, we reflect on the implications of this study for future research and for the design of multistakeholder recommender systems.  more » « less
Award ID(s):
2107577 2107505
NSF-PAR ID:
10434420
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
FAccT '23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency
Page Range / eLocation ID:
1652 to 1663
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recommender systems are poised at the interface between stakeholders: for example, job applicants and employers in the case of recommendations of employment listings, or artists and listeners in the case of music recommendation. In such multisided platforms, recommender systems play a key role in enabling discovery of products and information at large scales. However, as they have become more and more pervasive in society, the equitable distribution of their benefits and harms have been increasingly under scrutiny, as is the case with machine learning generally. While recommender systems can exhibit many of the biases encountered in other machine learning settings, the intersection of personalization and multisidedness makes the question of fairness in recommender systems manifest itself quite differently. In this article, we discuss recent work in the area of multisided fairness in recommendation, starting with a brief introduction to core ideas in algorithmic fairness and multistakeholder recommendation. We describe techniques for measuring fairness and algorithmic approaches for enhancing fairness in recommendation outputs. We also discuss feedback and popularity effects that can lead to unfair recommendation outcomes. Finally, we introduce several promising directions for future research in this area.

     
    more » « less
  2. As one of the most pervasive applications of machine learning, recommender systems are playing an important role on assisting human decision making. The satisfaction of users and the interests of platforms are closely related to the quality of the generated recommendation results. However, as a highly data-driven system, recommender system could be affected by data or algorithmic bias and thus generate unfair results, which could weaken the reliance of the systems. As a result, it is crucial to address the potential unfairness problems in recommendation settings. Recently, there has been growing attention on fairness considerations in recommender systems with more and more literature on approaches to promote fairness in recommendation. However, the studies are rather fragmented and lack a systematic organization, thus making it difficult to penetrate for new researchers to the domain. This motivates us to provide a systematic survey of existing works on fairness in recommendation. This survey focuses on the foundations for fairness in recommendation literature. It first presents a brief introduction about fairness in basic machine learning tasks such as classification and ranking in order to provide a general overview of fairness research, as well as introduce the more complex situations and challenges that need to be considered when studying fairness in recommender systems. After that, the survey will introduce fairness in recommendation with a focus on the taxonomies of current fairness definitions, the typical techniques for improving fairness, as well as the datasets for fairness studies in recommendation. The survey also talks about the challenges and opportunities in fairness research with the hope of promoting the fair recommendation research area and beyond. 
    more » « less
  3. Blum, A (Ed.)
    Algorithmic fairness, and in particular the fairness of scoring and classification algorithms, has become a topic of increasing social concern and has recently witnessed an explosion of research in theoretical computer science, machine learning, statistics, the social sciences, and law. Much of the literature considers the case of a single classifier (or scoring function) used once, in isolation. In this work, we initiate the study of the fairness properties of systems composed of algorithms that are fair in isolation; that is, we study fairness under composition. We identify pitfalls of naïve composition and give general constructions for fair composition, demonstrating both that classifiers that are fair in isolation do not necessarily compose into fair systems and also that seemingly unfair components may be carefully combined to construct fair systems. We focus primarily on the individual fairness setting proposed in [Dwork, Hardt, Pitassi, Reingold, Zemel, 2011], but also extend our results to a large class of group fairness definitions popular in the recent literature, exhibiting several cases in which group fairness definitions give misleading signals under composition. 
    more » « less
  4. null (Ed.)
    Recent work in fair machine learning has proposed dozens of technical definitions of algorithmic fairness and methods for enforcing these definitions. However, we still lack an understanding of how to develop machine learning systems with fairness criteria that reflect relevant stakeholders’ nuanced viewpoints in real-world contexts. To address this gap, we propose a framework for eliciting stakeholders’ subjective fairness notions. Combining a user interface that allows stakeholders to examine the data and the algorithm’s predictions with an interview protocol to probe stakeholders’ thoughts while they are interacting with the interface, we can identify stakeholders’ fairness beliefs and principles. We conduct a user study to evaluate our framework in the setting of a child maltreatment predictive system. Our evaluations show that the framework allows stakeholders to comprehensively convey their fairness viewpoints. We also discuss how our results can inform the design of predictive systems. 
    more » « less
  5. A key goal of the fair-ML community is to develop machine-learning based systems that, once introduced into a social context, can achieve social and legal outcomes such as fairness, justice, and due process. Bedrock concepts in computer science---such as abstraction and modular design---are used to define notions of fairness and discrimination, to produce fairness-aware learning algorithms, and to intervene at different stages of a decision-making pipeline to produce "fair" outcomes. In this paper, however, we contend that these concepts render technical interventions ineffective, inaccurate, and sometimes dangerously misguided when they enter the societal context that surrounds decision-making systems. We outline this mismatch with five "traps" that fair-ML work can fall into even as it attempts to be more context-aware in comparison to traditional data science. We draw on studies of sociotechnical systems in Science and Technology Studies to explain why such traps occur and how to avoid them. Finally, we suggest ways in which technical designers can mitigate the traps through a refocusing of design in terms of process rather than solutions, and by drawing abstraction boundaries to include social actors rather than purely technical ones. 
    more » « less