skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fairness in Recommendation: Foundations, Methods and Applications
As one of the most pervasive applications of machine learning, recommender systems are playing an important role on assisting human decision making. The satisfaction of users and the interests of platforms are closely related to the quality of the generated recommendation results. However, as a highly data-driven system, recommender system could be affected by data or algorithmic bias and thus generate unfair results, which could weaken the reliance of the systems. As a result, it is crucial to address the potential unfairness problems in recommendation settings. Recently, there has been growing attention on fairness considerations in recommender systems with more and more literature on approaches to promote fairness in recommendation. However, the studies are rather fragmented and lack a systematic organization, thus making it difficult to penetrate for new researchers to the domain. This motivates us to provide a systematic survey of existing works on fairness in recommendation. This survey focuses on the foundations for fairness in recommendation literature. It first presents a brief introduction about fairness in basic machine learning tasks such as classification and ranking in order to provide a general overview of fairness research, as well as introduce the more complex situations and challenges that need to be considered when studying fairness in recommender systems. After that, the survey will introduce fairness in recommendation with a focus on the taxonomies of current fairness definitions, the typical techniques for improving fairness, as well as the datasets for fairness studies in recommendation. The survey also talks about the challenges and opportunities in fairness research with the hope of promoting the fair recommendation research area and beyond.  more » « less
Award ID(s):
2046457 2007907 1910154 2127918
PAR ID:
10445528
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Intelligent Systems and Technology
ISSN:
2157-6904
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recommender systems are poised at the interface between stakeholders: for example, job applicants and employers in the case of recommendations of employment listings, or artists and listeners in the case of music recommendation. In such multisided platforms, recommender systems play a key role in enabling discovery of products and information at large scales. However, as they have become more and more pervasive in society, the equitable distribution of their benefits and harms have been increasingly under scrutiny, as is the case with machine learning generally. While recommender systems can exhibit many of the biases encountered in other machine learning settings, the intersection of personalization and multisidedness makes the question of fairness in recommender systems manifest itself quite differently. In this article, we discuss recent work in the area of multisided fairness in recommendation, starting with a brief introduction to core ideas in algorithmic fairness and multistakeholder recommendation. We describe techniques for measuring fairness and algorithmic approaches for enhancing fairness in recommendation outputs. We also discuss feedback and popularity effects that can lead to unfair recommendation outcomes. Finally, we introduce several promising directions for future research in this area. 
    more » « less
  2. The field of machine learning fairness has developed metrics, methodologies, and data sets for experimenting with classification algorithms. However, equivalent research is lacking in the area of personalized recommender systems. This 180-minute hands-on tutorial will introduce participants to concepts in fairness-aware recommendation, and metrics and methodologies in evaluating recommendation fairness. Participants will also gain hands-on experience with conducting fairness-aware recommendation experiments with the LibRec recommendation system using the librec-auto scripting platform, and learn the steps required to configure their own experiments, incorporate their own data sets, and design their own algorithms and metrics. 
    more » « less
  3. null (Ed.)
    Though recommender systems are defined by personalization, recent work has shown the importance of additional, beyond-accuracy objectives, such as fairness. Because users often expect their recommendations to be purely personalized, these new algorithmic objectives must be communicated transparently in a fairness-aware recommender system. While explanation has a long history in recommender systems research, there has been little work that attempts to explain systems that use a fairness objective. Even though the previous work in other branches of AI has explored the use of explanations as a tool to increase fairness, this work has not been focused on recommendation. Here, we consider user perspectives of fairness-aware recommender systems and techniques for enhancing their transparency. We describe the results of an exploratory interview study that investigates user perceptions of fairness, recommender systems, and fairness-aware objectives. We propose three features – informed by the needs of our participants – that could improve user understanding of and trust in fairness-aware recommender systems. 
    more » « less
  4. Online dating platforms have gained widespread popularity as a means for individuals to seek potential romantic relationships. While recommender systems have been designed to improve the user experience in dating platforms by providing personalized recommendations, increasing concerns about fairness have encouraged the development of fairness-aware recommender systems from various perspectives (e.g., gender and race). However, sexual orientation, which plays a significant role in finding a satisfying relationship, is under-investigated. To fill this crucial gap, we propose a novel metric, Opposite Gender Interaction Ratio (OGIR), as a way to investigate potential unfairness for users with varying preferences towards the opposite gender. We empirically analyze a real online dating dataset and observe existing recommender algorithms could suffer from group unfairness according to OGIR. We further investigate the potential causes for such gaps in recommendation quality, which lead to the challenges of group quantity imbalance and group calibration imbalance. Ultimately, we propose a fair recommender system based on re-weighting and re-ranking strategies to respectively mitigate these associated imbalance challenges. Experimental results demonstrate both strategies improve fairness while their combination achieves the best performance towards maintaining model utility while improving fairness. 
    more » « less
  5. Currently, there is a surge of interest in fair Artificial Intelligence (AI) and Machine Learning (ML) research which aims to mitigate discriminatory bias in AI algorithms, e.g., along lines of gender, age, and race. While most research in this domain focuses on developing fair AI algorithms, in this work, we examine the challenges which arise when humans and fair AI interact. Our results show that due to an apparent conflict between human preferences and fairness, a fair AI algorithm on its own may be insufficient to achieve its intended results in the real world. Using college major recommendation as a case study, we build a fair AI recommender by employing gender debiasing machine learning techniques. Our offline evaluation showed that the debiased recommender makes fairer career recommendations without sacrificing its accuracy in prediction. Nevertheless, an online user study of more than 200 college students revealed that participants on average prefer the original biased system over the debiased system. Specifically, we found that perceived gender disparity is a determining factor for the acceptance of a recommendation. In other words, we cannot fully address the gender bias issue in AI recommendations without addressing the gender bias in humans. We conducted a follow-up survey to gain additional insights into the effectiveness of various design options that can help participants to overcome their own biases. Our results suggest that making fair AI explainable is crucial for increasing its adoption in the real world. 
    more » « less