skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Performance Evaluation of Lithium-ion Batteries under Low-Pressure Conditions for Aviation Applications
Electrification is getting more important in the aviation industry with the increasing need for reducing emissions of carbon dioxide and fuel consumption. It is crucial to assess the behavior of Li-Ion batteries at high-altitude conditions to design safe and reliable battery packs. This paper aims at benchmarking the performance of different formats of battery cells (pouch cells and cylindrical cells) in low-pressure environments. A test setup was designed and fabricated to replicate the standard procedure defined by the RTCA DO-311 standard, such as the altitude test and rapid decompression test. During the test voltage, current, temperature, and pressure were monitored, and the evaluation criteria is based on the capacity retention, along with the structural integrity of the cell. From preliminary tests, it was observed that cylindrical cells do not show a significant change in performance at low-pressure conditions thanks to their steel casing. Failure has been observed in pouch cells due to the absence of a rigid enclosure.  more » « less
Award ID(s):
1738723
PAR ID:
10434744
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
SAE Technical Paper Series
Volume:
1
ISSN:
0148-7191
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SAE (Ed.)
    An investigation of the performance and emissions of a Fischer-Tropsch Coal-to-Liquid (CTL) Iso-Paraffinic Kerosene (IPK) was conducted using a CRDI compression ignition research engine with ULSD as a reference. Due to the low Derived Cetane Number (DCN), of IPK, an extended Ignition Delay (ID), and Combustion Delay (CD) were found for it, through experimentation in a Constant Volume Combustion Chamber (CVCC). Neat IPK was analyzed in a research engine at 4 bar Indicated Mean Effective Pressure (IMEP) at three injection timings: 15°, 20°, and 25° BTDC. Combustion phasing (CA50) was matched with ULSD at 10.8° and 16° BTDC. The IPK DCN was found to be 26, while the ULSD DCN was significantly higher at 47 in a PAC CID 510. In the engine, IPK’s DCN combined with its short physical ignition delay and long chemical ignition delay compared to ULSD, caused extended duration in Low Temperature Heat Release (LTHR) and cool flame formation. It was found in an analysis of the Apparent Heat Release Rate (AHRR) curve for IPK that there were multiple Negative Temperature Coefficient (NTCR) regions before the main combustion event. The High Temperature Heat Release (HTHR) of IPK achieved a greater peak heat release rate compared to ULSD. Pressure rise rate for IPK was observed to increase significantly with increase in injection timing. The peak in-cylinder pressure was also greater for IPK when matching CA50 by varying injection timing. Emissions analysis revealed that IPK produced less NOx, soot, and CO2 compared to ULSD. CO and UHC emissions for IPK increased. 
    more » « less
  2. Understanding the behavior of pressure increases in lithium-ion (Li-ion) cells is essential for prolonging the lifespan of Li-ion battery cells and minimizing the safety risks associated with cell aging. This work investigates the effects of C-rates and temperature on pressure behavior in commercial lithium cobalt oxide (LCO)/graphite pouch cells. The battery is volumetrically constrained, and the mechanical pressure response is measured using a force gauge as the battery is cycled. The effect of the C-rate (1C, 2C, and 3C) and ambient temperature (10 °C, 25 °C, and 40 °C) on the increase in battery pressure is investigated. By analyzing the change in the minimum, maximum, and pressure difference per cycle, we identify and discuss the effects of different factors (i.e., SEI layer damage, electrolyte decomposition, lithium plating) on the pressure behavior. Operating at high C-rates or low temperatures rapidly increases the residual pressure as the battery is cycled. The results suggest that lithium plating is predominantly responsible for battery expansion and pressure increase during the cycle aging of Li-ion cells rather than electrolyte decomposition. Electrochemical impedance spectroscopy (EIS) measurements can support our conclusions. Postmortem analysis of the aged cells was performed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) to confirm the occurrence of lithium plating and film growth on the anodes of the aged cells. This study demonstrates that pressure measurements can provide insights into the aging mechanisms of Li-ion batteries and can be used as a reliable predictor of battery degradation. 
    more » « less
  3. Understanding the behavior of pressure increases in lithium-ion (Li-ion) cells is essential for prolonging the lifespan of Li-ion battery cells and minimizing the safety risks associated with cell aging. This work investigates the effects of C-rates and temperature on pressure behavior in commercial lithium cobalt oxide (LCO)/graphite pouch cells. The battery is volumetrically constrained, and the mechanical pressure response is measured using a force gauge as the battery is cycled. The effect of the C-rate (1C, 2C, and 3C) and ambient temperature (10 ◦C, 25 ◦C, and 40 ◦C) on the increase in battery pressure is investigated. By analyzing the change in the minimum, maximum, and pressure difference per cycle, we identify and discuss the effects of different factors (i.e., SEI layer damage, electrolyte decomposition, lithium plating) on the pressure behavior. Operating at high C-rates or low temperatures rapidly increases the residual pressure as the battery is cycled. The results suggest that lithium plating is predominantly responsible for battery expansion and pressure increase during the cycle aging of Li-ion cells rather than electrolyte decomposition. Electrochemical impedance spectroscopy (EIS) measurements can support our conclusions. Postmortem analysis of the aged cells was performed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) to confirm the occurrence of lithium plating and film growth on the anodes of the aged cells. This study demonstrates that pressure measurements can provide insights into the aging mechanisms of Li-ion batteries and can be used as a reliable predictor of battery degradation. 
    more » « less
  4. Range anxiety and lack of adequate access to fast charging are proving to be important impediments to electric vehicle (EV) adoption. While many techniques to fast charging EV batteries (model-based & model-free) have been developed, they have focused on a single Lithium-ion cell. Extensions to battery packs are scarce, often considering simplified architectures (e.g., series-connected) for ease of modeling. Computational considerations have also restricted fast-charging simulations to small battery packs, e.g., four cells (for both series and parallel connected cells). Hence, in this paper, we pursue a model-free approach based on reinforcement learning (RL) to fast charge a large battery pack (comprising 444 cells). Each cell is characterized by an equivalent circuit model coupled with a second-order lumped thermal model to simulate the battery behavior. After training the underlying RL, the developed model will be straightforward to implement with low computational complexity. In detail, we utilize a Proximal Policy Optimization (PPO) deep RL as the training algorithm. The RL is trained in such a way that the capacity loss due to fast charging is minimized. The pack’s highest cell surface temperature is considered an RL state, along with the pack’s state of charge. Finally, in a detailed case study, the results are compared with the constant current-constant voltage (CC-CV) approach, and the outperformance of the RL-based approach is demonstrated. Our proposed PPO model charges the battery as fast as a CC-CV with a 5C constant stage while maintaining the temperature as low as a CC-CV with a 4C constant stage. 
    more » « less
  5. Abstract All‐solid‐state batteries are emerging as potential successors in energy storage technologies due to their increased safety, stemming from replacing organic liquid electrolytes in conventional Li‐ion batteries with less flammable solid‐state electrolytes. However, all‐solid‐state batteries require precise control over cycling pressure to maintain effective interfacial contacts between materials. Traditional uniaxial cell holders, often used in battery research, face challenges in accommodating electrode volume changes, providing uniform pressure distribution, and maintaining consistent pressure over time. This study introduces isostatic pouch cell holders utilizing air as pressurizing media to achieve uniform and accurately regulated cycling pressure. LiNi0.8Co0.1Mn0.1O2| Li6PS5Cl | Si pouch cells are fabricated and tested under 1 to 5 MPa pressures, revealing improved electrochemical performance with higher cycling pressures, with 2 MPa as the minimum for optimal operation. A bilayer pouch cell with a theoretical capacity of 100 mAh, cycled with an isostatic pouch cell holder, demonstrated a first‐cycle Coulombic efficiency of 76.9% and a discharge capacity of 173.6 mAh g−1(88.1 mAh), maintaining 83.6% capacity after 100 cycles. These findings underscore the effectiveness of isostatic pouch cell holders in enhancing the performance and practical application of all‐solid‐state batteries. 
    more » « less