skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deforming symmetric product orbifolds: a tale of moduli and higher spin currents
A bstract We analyze how deforming symmetric product orbifolds of two-dimensional $$ \mathcal{N} $$ N = 2 conformal field theories by an exactly marginal operator lifts higher spin currents present at the orbifold point. We find on the one hand that these currents are universally lifted regardless of the underlying CFT. On the other hand the details of the lifting are surprisingly non-universal, with dependence on the central charge of the underlying CFT and the specific marginal operator in use. In the context of the AdS/CFT correspondence, our results illustrate the mechanism by which the stringy spectrum turns into a supergravity spectrum when moving through the moduli space. They also provide further evidence that symmetric product orbifolds of $$ \mathcal{N} $$ N = 2 minimal models are holographic.  more » « less
Award ID(s):
2111748
PAR ID:
10434798
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
8
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract A holographic duality was recently established between an $$ \mathcal{N} $$ N = 4 non-geometric AdS 4 solution of type IIB supergravity in the so-called S-fold class, and a three- dimensional conformal field theory (CFT) defined as a limit of $$ \mathcal{N} $$ N = 4 super-Yang-Mills at an interface. Using gauged supergravity, the $$ \mathcal{N} $$ N = 2 conformal manifold (CM) of this CFT has been assessed to be two-dimensional. Here, we holographically characterise the large- N operator spectrum of the marginally-deformed CFT. We do this by, firstly, providing the algebraic structure of the complete Kaluza-Klein (KK) spectrum on the associated two-parameter family of AdS4 solutions. And, secondly, by computing the $$ \mathcal{N} $$ N = 2 super-multiplet dimensions at the first few KK levels on a lattice in the CM, using new exceptional field theory techniques. Our KK analysis also allows us to establish that, at least at large N , this $$ \mathcal{N} $$ N = 2 CM is topologically a non-compact cylindrical Riemann surface bounded on only one side. 
    more » « less
  2. null (Ed.)
    A bstract Janus solutions are constructed in d = 3, $$ \mathcal{N} $$ N = 8 gauged supergravity. We find explicit half-BPS solutions where two scalars in the SO(1, 8)/SO(8) coset have a nontrivial profile. These solutions correspond on the CFT side to an interface with a position-dependent expectation value for a relevant operator and a source which jumps across the interface for a marginal operator. 
    more » « less
  3. null (Ed.)
    A bstract New renormalisation group flows of three-dimensional Chern-Simons theories with a single gauge group SU( N ) and adjoint matter are found holographically. These RG flows have an infrared fixed point given by a CFT with $$ \mathcal{N} $$ N = 3 supersymmetry and SU(2) flavour symmetry. The ultraviolet fixed point is again described by a CFT with either $$ \mathcal{N} $$ N = 2 and SU(3) symmetry or $$ \mathcal{N} $$ N = 1 and G 2 symmetry. The gauge/gravity duals of these RG flows are constructed as domain-wall solutions of a gauged supergravity model in four dimensions that enjoys an embedding into massive IIA supergravity. A concrete RG flow that brings a mass deformation of the $$ \mathcal{N} $$ N = 2 CFT into the $$ \mathcal{N} $$ N = 3 CFT at low energies is described in detail. 
    more » « less
  4. A<sc>bstract</sc> We study thermal two-point functions and four-point functions involving two heavy twisted operators and two light probes in symmetric product orbifolds. We identify cases where they are universal at largeN, that is, they are only sensitive to the orbifold structure. Surprisingly, such observables mimic correlators obtained from the BTZ background, even though symmetric product orbifolds are not dual to semi-classical gravity. We discuss the interpretation of these results in light of the criteria for emergence of spacetime via Von Neumann algebras. Our analysis implies that a condition on the infiniteNthermal two-point functions cannot be stringent enough to define an emergent spacetime and the concept of a sharp horizon. 
    more » « less
  5. null (Ed.)
    A bstract We study O ( n )-symmetric two-dimensional conformal field theories (CFTs) for a continuous range of n below two. These CFTs describe the fixed point behavior of self-avoiding loops. There is a pair of known fixed points connected by an RG flow. When n is equal to two, which corresponds to the Kosterlitz-Thouless critical theory, the fixed points collide. We find that for n generic these CFTs are logarithmic and contain negative norm states; in particular, the O ( n ) currents belong to a staggered logarithmic multiplet. Using a conformal bootstrap approach we trace how the negative norm states decouple at n = 2, restoring unitarity. The IR fixed point possesses a local relevant operator, singlet under all known global symmetries of the CFT, and, nevertheless, it can be reached by an RG flow without tuning. Besides, we observe logarithmic correlators in the closely related Potts model. 
    more » « less