skip to main content


Title: Flowing to $$ \mathcal{N} $$ = 3 Chern-Simons-matter theory
A bstract New renormalisation group flows of three-dimensional Chern-Simons theories with a single gauge group SU( N ) and adjoint matter are found holographically. These RG flows have an infrared fixed point given by a CFT with $$ \mathcal{N} $$ N = 3 supersymmetry and SU(2) flavour symmetry. The ultraviolet fixed point is again described by a CFT with either $$ \mathcal{N} $$ N = 2 and SU(3) symmetry or $$ \mathcal{N} $$ N = 1 and G 2 symmetry. The gauge/gravity duals of these RG flows are constructed as domain-wall solutions of a gauged supergravity model in four dimensions that enjoys an embedding into massive IIA supergravity. A concrete RG flow that brings a mass deformation of the $$ \mathcal{N} $$ N = 2 CFT into the $$ \mathcal{N} $$ N = 3 CFT at low energies is described in detail.  more » « less
Award ID(s):
1720364
NSF-PAR ID:
10253210
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2020
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We compute 1 /λ corrections to the four-point functions of half-BPS operators in SU( N ) $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory at large N and large ’t Hooft coupling λ = $$ {g}_{\mathrm{YM}}^2N $$ g YM 2 N using two methods. Firstly, we relate integrals of these correlators to derivatives of the mass deformed S 4 free energy, which was computed at leading order in large N and to all orders in 1 /λ using supersymmetric localization. Secondly, we use AdS/CFT to relate these 1 /λ corrections to higher derivative corrections to supergravity for scattering amplitudes of Kaluza-Klein scalars in IIB string theory on AdS 5 × S 5 , which in the flat space limit are known from worldsheet calculations. These two methods match at the order corresponding to the tree level R 4 interaction in string theory, which provides a precise check of AdS/CFT beyond supergravity, and allow us to derive the holographic correlators to tree level D 4 R 4 order. Combined with constraints from [1], our results can be used to derive CFT data to one-loop D 4 R 4 order. Finally, we use AdS/CFT to fix these correlators in the limit where N is taken to be large while g YM is kept fixed. In this limit, we present a conjecture for the small mass limit of the S 4 partition function that includes all instanton corrections and is written in terms of the same Eisenstein series that appear in the study of string theory scattering amplitudes. 
    more » « less
  2. A bstract We study the four-point function of the lowest-lying half-BPS operators in the $$ \mathcal{N} $$ N = 4 SU( N ) super-Yang-Mills theory and its relation to the flat-space four-graviton amplitude in type IIB superstring theory. We work in a large- N expansion in which the complexified Yang-Mills coupling τ is fixed. In this expansion, non-perturbative instanton contributions are present, and the SL(2 , ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the mass-deformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the four-point correlator at separated points. In a normalization where the two-point functions are proportional to N 2 − 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the four-point correlator are proportional to the non-holomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB S-matrix arising from R 4 and D 4 R 4 contact inter-actions, which, for the R 4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}-m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of non-holomorphic Eisenstein series with half-integer index, which are manifestly SL(2 , ℤ) invariant. 
    more » « less
  3. A bstract In this paper, we continue the study of Janus and RG-flow interfaces in three dimensional supergravity continuing the work presented in [1]. We consider $$ \mathcal{N} $$ N = 8 gauged supergravity theories which have a $$ \mathcal{N} $$ N = (4 , 4) AdS 3 vacuum with D 1 (2 , 1; α ) × D 1 (2 , 1; α ) symmetry for general α . We derive the BPS flow equations and find numerical solutions. Some holographic quantities such as the entanglement entropy are calculated. 
    more » « less
  4. A bstract We consider the Seiberg-Witten solution of pure $$ \mathcal{N} $$ N = 2 gauge theory in four dimensions, with gauge group SU( N ). A simple exact series expansion for the dependence of the 2( N − 1) Seiberg-Witten periods a I ( u ) , a DI ( u ) on the N − 1 Coulomb-branch moduli u n is obtained around the ℤ 2 N -symmetric point of the Coulomb branch, where all u n vanish. This generalizes earlier results for N = 2 in terms of hypergeometric functions, and for N = 3 in terms of Appell functions. Using these and other analytical results, combined with numerical computations, we explore the global structure of the Kähler potential K = $$ \frac{1}{2}{\sum}_I $$ 1 2 ∑ I Im( $$ \overline{a} $$ a ¯ I a DI ), which is single valued on the Coulomb branch. Evidence is presented that K is a convex function, with a unique minimum at the ℤ 2 N -symmetric point. Finally, we explore candidate walls of marginal stability in the vicinity of this point, and their relation to the surface of vanishing Kähler potential. 
    more » « less
  5. We describe the confining instabilities of a proposed quantum spin liquid underlying the pseudogap metal state of the hole-doped cuprates. The spin liquid can be described by a SU(2) gauge theory ofNf= 2 massless Dirac fermions carrying fundamental gauge charges—this is the low-energy theory of a mean-field state of fermionic spinons moving on the square lattice withπ-flux per plaquette in the ℤ2center of SU(2). This theory has an emergent SO(5)fglobal symmetry and is presumed to confine at low energies to the Néel state. At nonzero doping (or smaller Hubbard repulsionUat half-filling), we argue that confinement occurs via the Higgs condensation of bosonic chargons carrying fundamental SU(2) gauge charges also moving inπ2-flux. At half-filling, the low-energy theory of the Higgs sector hasNb= 2 relativistic bosons with a possible emergent SO(5)bglobal symmetry describing rotations between ad-wave superconductor, period-2 charge stripes, and the time-reversal breaking “d-density wave” state. We propose a conformal SU(2) gauge theory withNf= 2 fundamental fermions,Nb= 2 fundamental bosons, and a SO(5)f×SO(5)bglobal symmetry, which describes a deconfined quantum critical point between a confining state which breaks SO(5)fand a confining state which breaks SO(5)b. The pattern of symmetry breaking within both SO(5)s is determined by terms likely irrelevant at the critical point, which can be chosen to obtain a transition between Néel order andd-wave superconductivity. A similar theory applies at nonzero doping and largeU, with longer-range couplings of the chargons leading to charge order with longer periods.

     
    more » « less