skip to main content

Title: Flowing to $$ \mathcal{N} $$ = 3 Chern-Simons-matter theory
A bstract New renormalisation group flows of three-dimensional Chern-Simons theories with a single gauge group SU( N ) and adjoint matter are found holographically. These RG flows have an infrared fixed point given by a CFT with $$ \mathcal{N} $$ N = 3 supersymmetry and SU(2) flavour symmetry. The ultraviolet fixed point is again described by a CFT with either $$ \mathcal{N} $$ N = 2 and SU(3) symmetry or $$ \mathcal{N} $$ N = 1 and G 2 symmetry. The gauge/gravity duals of these RG flows are constructed as domain-wall solutions of a gauged supergravity model in four dimensions that enjoys an embedding into massive IIA supergravity. A concrete RG flow that brings a mass deformation of the $$ \mathcal{N} $$ N = 2 CFT into the $$ \mathcal{N} $$ N = 3 CFT at low energies is described in detail.
; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of High Energy Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We compute 1 /λ corrections to the four-point functions of half-BPS operators in SU( N ) $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory at large N and large ’t Hooft coupling λ = $$ {g}_{\mathrm{YM}}^2N $$ g YM 2 N using two methods. Firstly, we relate integrals of these correlators to derivatives of the mass deformed S 4 free energy, which was computed at leading order in large N and to all orders in 1 /λ using supersymmetric localization. Secondly, we use AdS/CFT to relate these 1 /λ corrections to higher derivative corrections to supergravity for scattering amplitudes of Kaluza-Klein scalars in IIB string theory on AdS 5 × S 5 , which in the flat space limit are known from worldsheet calculations. These two methods match at the order corresponding to the tree level R 4 interaction in string theory, which provides a precise check of AdS/CFT beyond supergravity, and allow us to derive the holographic correlators to tree level D 4 R 4 order. Combined with constraints from [1], our results can be used to derive CFT data to one-loop D 4 R 4 order. Finally, we use AdS/CFT to fix these correlators in themore »limit where N is taken to be large while g YM is kept fixed. In this limit, we present a conjecture for the small mass limit of the S 4 partition function that includes all instanton corrections and is written in terms of the same Eisenstein series that appear in the study of string theory scattering amplitudes.« less
  2. A bstract We study the four-point function of the lowest-lying half-BPS operators in the $$ \mathcal{N} $$ N = 4 SU( N ) super-Yang-Mills theory and its relation to the flat-space four-graviton amplitude in type IIB superstring theory. We work in a large- N expansion in which the complexified Yang-Mills coupling τ is fixed. In this expansion, non-perturbative instanton contributions are present, and the SL(2 , ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the mass-deformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the four-point correlator at separated points. In a normalization where the two-point functions are proportional to N 2 − 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the four-point correlator are proportional to the non-holomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$more »E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB S-matrix arising from R 4 and D 4 R 4 contact inter-actions, which, for the R 4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}-m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of non-holomorphic Eisenstein series with half-integer index, which are manifestly SL(2 , ℤ) invariant.« less
  3. A bstract In this paper, we continue the study of Janus and RG-flow interfaces in three dimensional supergravity continuing the work presented in [1]. We consider $$ \mathcal{N} $$ N = 8 gauged supergravity theories which have a $$ \mathcal{N} $$ N = (4 , 4) AdS 3 vacuum with D 1 (2 , 1; α ) × D 1 (2 , 1; α ) symmetry for general α . We derive the BPS flow equations and find numerical solutions. Some holographic quantities such as the entanglement entropy are calculated.
  4. A bstract We consider the Seiberg-Witten solution of pure $$ \mathcal{N} $$ N = 2 gauge theory in four dimensions, with gauge group SU( N ). A simple exact series expansion for the dependence of the 2( N − 1) Seiberg-Witten periods a I ( u ) , a DI ( u ) on the N − 1 Coulomb-branch moduli u n is obtained around the ℤ 2 N -symmetric point of the Coulomb branch, where all u n vanish. This generalizes earlier results for N = 2 in terms of hypergeometric functions, and for N = 3 in terms of Appell functions. Using these and other analytical results, combined with numerical computations, we explore the global structure of the Kähler potential K = $$ \frac{1}{2}{\sum}_I $$ 1 2 ∑ I Im( $$ \overline{a} $$ a ¯ I a DI ), which is single valued on the Coulomb branch. Evidence is presented that K is a convex function, with a unique minimum at the ℤ 2 N -symmetric point. Finally, we explore candidate walls of marginal stability in the vicinity of this point, and their relation to the surface of vanishing Kähler potential.
  5. A bstract We investigate the underlying quantum group symmetry of 2d Liouville and dilaton gravity models, both consolidating known results and extending them to the cases with $$ \mathcal{N} $$ N = 1 supersymmetry. We first calculate the mixed parabolic representation matrix element (or Whittaker function) of U q ( $$ \mathfrak{sl} $$ sl (2 , ℝ)) and review its applications to Liouville gravity. We then derive the corresponding matrix element for U q ( $$ \mathfrak{osp} $$ osp (1 | 2 , ℝ)) and apply it to explain structural features of $$ \mathcal{N} $$ N = 1 Liouville supergravity. We show that this matrix element has the following properties: (1) its q → 1 limit is the classical OSp + (1 | 2 , ℝ) Whittaker function, (2) it yields the Plancherel measure as the density of black hole states in $$ \mathcal{N} $$ N = 1 Liouville supergravity, and (3) it leads to 3 j -symbols that match with the coupling of boundary vertex operators to the gravitational states as appropriate for $$ \mathcal{N} $$ N = 1 Liouville supergravity. This object should likewise be of interest in the context of integrability of supersymmetric relativistic Toda chains. Wemore »furthermore relate Liouville (super)gravity to dilaton (super)gravity with a hyperbolic sine (pre)potential. We do so by showing that the quantization of the target space Poisson structure in the (graded) Poisson sigma model description leads directly to the quantum group U q ( $$ \mathfrak{sl} $$ sl (2 , ℝ)) or the quantum supergroup U q ( $$ \mathfrak{osp} $$ osp (1 | 2 , ℝ)).« less