skip to main content


Title: Composition constraints of the TRAPPIST-1 planets from their formation
ABSTRACT

We study the formation of the TRAPPIST-1 (T1) planets starting shortly after Moon-sized bodies form just exterior to the ice line. Our model includes mass growth from pebble accretion and mergers, fragmentation, type-I migration, and eccentricity and inclination dampening from gas drag. We follow the composition evolution of the planets fed by a dust condensation code that tracks how various dust species condense out of the disc as it cools. We use the final planet compositions to calculate the resulting radii of the planets using a new planet interior structure code and explore various interior structure models. Our model reproduces the broader architecture of the T1 system and constrains the initial water mass fraction of the early embryos and the final relative abundances of the major refractory elements. We find that the inner two planets likely experienced giant impacts and fragments from collisions between planetary embryos often seed the small planets that subsequently grow through pebble accretion. Using our composition constraints, we find solutions for a two-layer model, a planet comprised of only a core and mantle, that match observed bulk densities for the two inner planets b and c. This, along with the high number of giant impacts the inner planets experienced, is consistent with recent observations that these planets are likely desiccated. However, two-layer models seem unlikely for most of the remaining outer planets, which suggests that these planets have a primordial hydrosphere. Our composition constraints also indicate that no planets are consistent with a core-free interior structure.

 
more » « less
Award ID(s):
2107738
NSF-PAR ID:
10434804
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3749-3768
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The origin of Uranus and Neptune has long been challenging to explain, due to the large orbital distances from the Sun. After a planetary embryo has been formed, the main accretion processes are likely pebble, gas, and planetesimal accretion. Previous studies of Uranus and Neptune formation typically do not consider all three processes; and furthermore, do not investigate how the formation of the outer planet impacts the inner planet. In this paper, we study the concurrent formation of Uranus and Neptune via pebble, gas, and planetesimal accretion. We use a dust-evolution model to predict the size and mass flux of pebbles, and derive our own fit for gas accretion. We do not include migration, but consider a wide range of formation locations between 12 and $40\, \textrm {au}$. If the planetary embryos form at the same time and with the same mass, our formation model with an evolving dust population is unable to produce Uranus and Neptune analogues. This is because the mass difference between the planets and the H–He mass fractions become too high. However, if the outer planetary embryo forms earlier and/or more massive than the inner embryo, the two planets do form in a few instances when the disc is metal-rich and dissipates after a few Myr. Furthermore, our study suggests that in situ formation is rather unlikely. Nevertheless, giant impacts and/or migration could potentially aid in the formation, and future studies including these processes could bring us one step closer to understanding how Uranus and Neptune formed.

     
    more » « less
  2. Abstract The observed correlation between outer giant planets and inner super-Earths is emerging as an important constraint on planet formation theories. In this study, we focus on Kepler-167, which is currently the only system known to contain both inner transiting super-Earths and a confirmed outer transiting gas giant companion beyond 1 au. Using long-term radial velocity monitoring, we measure the mass of the gas giant Kepler-167e ( P = 1071 days) to be 1.01 − 0.15 + 0.16 M J , thus confirming it as a Jupiter analog. We refit the Kepler photometry to obtain updated radii for all four planets. Using a planetary structure model, we estimate that Kepler-167e contains 66 ± 19 M ⊕ of solids and is significantly enriched in metals relative to its solar-metallicity host star. We use these new constraints to explore the broader question of how systems like Kepler-167 form in the pebble accretion framework for giant planet core formation. We utilize simple disk evolution models to demonstrate that more massive and metal-rich disks, which are the most favorable sites for giant planet formation, can also deliver enough solids to the inner disk to form systems of super-Earths. We use these same models to constrain the nature of Kepler-167's protoplanetary disk and find that it likely contained ≳300 M ⊕ of dust and was ≳40 au in size. These values overlap with the upper end of the observed dust mass and size distributions of Class 0 and I disks and are also consistent with the observed occurrence rate of Jupiter analogs around Sun-like stars. 
    more » « less
  3. Abstract

    Kepler-289 is a three-planet system containing two sub-Neptunes and one cool giant planet orbiting a young, Sun-like star. All three planets exhibit transit timing variations (TTVs), with both adjacent planet pairs having orbital periods close to the 2:1 orbital resonance. We observe two transits of Kepler-289c with the Wide-field InfraRed Camera on the 200″ Hale Telescope at Palomar Observatory, using diffuser-assisted photometry to achieve space-like photometric precision from the ground. These new transit observations extend the original four-year Kepler TTV baseline by an additional 7.5 yr. We rereduce the archival Kepler data with an improved stellar activity correction and carry out a joint fit with the Palomar data to constrain the transit shapes and derive updated transit times. We then model the TTVs to determine the masses of the three planets and constrain their densities and bulk compositions. Our new analysis improves on previous mass and density constraints by a factor of two or more for all three planets, with the innermost planet showing the largest improvement. Our updated atmospheric mass fractions for the inner two planets indicate that they have hydrogen-rich envelopes, consistent with their location on the upper side of the radius valley. We also constrain the heavy element composition of the outer Saturn-mass planet, Kepler-289c, for the first time, finding that it contains 30.5 ± 6.9Mof metals. We use dust evolution models to show that Kepler-289c must have formed beyond 1 au, and likely beyond 3 au, and then migrated inward.

     
    more » « less
  4. Abstract

    Earth likely acquired much of its inventory of volatile elements during the main stage of its formation. Some of Earth’s proto-atmosphere must therefore have survived the giant impacts, collisions between planet-sized bodies, that dominate the latter phases of accretion. Here, we use a suite of 1D hydrodynamic simulations and impedance-match calculations to quantify the effect that preimpact surface conditions (such as atmospheric pressure and the presence of an ocean) have on the efficiency of atmospheric and ocean loss from protoplanets during giant impacts. We find that—in the absence of an ocean—lighter, hotter, and lower-pressure atmospheres are more easily lost. The presence of an ocean can significantly increase the efficiency of atmospheric loss compared to the no-ocean case, with a rapid transition between low- and high-loss regimes as the mass ratio of atmosphere to ocean decreases. However, contrary to previous thinking, the presence of an ocean can also reduce atmospheric loss if the ocean is not sufficiently massive, typically less than a few times the atmospheric mass. Volatile loss due to giant impacts is thus highly sensitive to the surface conditions on the colliding bodies. To allow our results to be combined with 3D impact simulations, we have developed scaling laws that relate loss to the ground velocity and surface conditions. Our results demonstrate that the final volatile budgets of planets are critically dependent on the exact timing and sequence of impacts experienced by their precursor planetary embryos, making atmospheric properties a highly stochastic outcome of accretion.

     
    more » « less
  5. Abstract Giant planets have been discovered at large separations from the central star. Moreover, a striking number of young circumstellar disks have gas and/or dust gaps at large orbital separations, potentially driven by embedded planetary objects. To form massive planets at large orbital separations through core accretion within the disk lifetime, however, an early solid body to seed pebble and gas accretion is desirable. Young protoplanetary disks are likely self-gravitating, and these gravitoturbulent disks may efficiently concentrate solid material at the midplane driven by spiral waves. We run 3D local hydrodynamical simulations of gravitoturbulent disks with Lagrangian dust particles to determine whether particle and gas self-gravity can lead to the formation of dense solid bodies, seeding later planet formation. When self-gravity between dust particles is included, solids of size St = 0.1–1 concentrate within the gravitoturbulent spiral features and collapse under their own self-gravity into dense clumps up to several M ⊕ in mass at wide orbits. Simulations with dust that drift most efficiently, St = 1, form the most massive clouds of particles, while simulations with smaller dust particles, St = 0.1, have clumps with masses an order of magnitude lower. When the effect of dust backreaction onto the gas is included, dust clumps become smaller by a factor of a few but more numerous. The existence of large solid bodies at an early stage of the disk can accelerate the planet formation process, particularly at wide orbital separations, and potentially explain planets distant from the central stars and young protoplanetary disks with substructures. 
    more » « less