skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polarization fraction of Planck Galactic cold clumps and forecasts for the Simons Observatory
ABSTRACT We measure the mean-squared polarization fraction of a sample of 6282 Galactic cold clumps at 353 GHz, consisting of Planck Galactic cold clump (PGCC) catalogue category 1 objects [flux densities measured with signal-to-noise ratio (S/N) > 4]. At 353 GHz, we find the mean-squared polarization fraction, which we define as the mean-squared polarization divided by the mean-squared intensity, to be (4.79 ± 0.44) × 10−4 equation to an $$11\, \sigma$$ detection of polarization. We test if the polarization fraction depends on the clumps’ physical properties, including flux density, luminosity, Galactic latitude, and physical distance. We see a trend towards increasing polarization fraction with increasing Galactic latitude, but find no evidence that polarization depends on the other tested properties. The Simons Observatory, with angular resolution of order 1 arcmin and noise levels between 22 and $$54\, \mu$$K−arcmin at high frequencies, will substantially enhance our ability to determine the magnetic field structure in Galactic cold clumps. At $$\ge 5\, \sigma$$ significance, we predict the Simons Observatory will detect at least ∼12 000 cold clumps in intensity and ∼430 cold clumps in polarization. This number of polarization detections would represent a two orders of magnitude increase over the current Planck results. We also release software that can be used to mask these Galactic cold clumps in other analyses.  more » « less
Award ID(s):
2106607
PAR ID:
10434805
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3712-3723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We study the polarization properties of extragalactic sources at 95 and 150 GHz in the SPTpol 500 deg2 survey. We estimate the polarized power by stacking maps at known source positions, and correct for noise bias by subtracting the mean polarized power at random positions in the maps. We show that the method is unbiased using a set of simulated maps with similar noise properties to the real SPTpol maps. We find a flux-weighted mean-squared polarization fraction 〈p2〉 = [8.9 ± 1.1] × 10−4 at 95 GHz and [6.9 ± 1.1] × 10−4 at 150 GHz for the full sample. This is consistent with the values obtained for a subsample of active galactic nuclei. For dusty sources, we find 95 per cent upper limits of 〈p2〉95 < 16.9 × 10−3 and 〈p2〉150 < 2.6 × 10−3. We find no evidence that the polarization fraction depends on the source flux or observing frequency. The 1σ upper limit on measured mean-squared polarization fraction at 150 GHz implies that extragalactic foregrounds will be subdominant to the CMB E and B mode polarization power spectra out to at least ℓ ≲ 5700 (ℓ ≲ 4700) and ℓ ≲ 5300 (ℓ ≲ 3600), respectively, at 95 (150) GHz. 
    more » « less
  2. Abstract Utilizing Planck polarized dust emission maps at 353 GHz and large-area maps of the neutral hydrogen (Hi) cold neutral medium (CNM) fraction (fCNM), we investigate the relationship between dust polarization fraction (p353) andfCNMin the diffuse high latitude ( b > 30 ° ) sky. We find that the correlation betweenp353andfCNMis qualitatively distinct from thep353–Hicolumn density (NHi) relationship. At low column densities (NHi< 4 × 1020cm−2) wherep353andNHiare uncorrelated, there is a strong positivep353–fCNMcorrelation. We fit thep353–fCNMcorrelation with data-driven models to constrain the degree of magnetic field disorder between phases along the line of sight. We argue that an increased magnetic field disorder in the warm neutral medium (WNM) relative to the CNM best explains the positivep353–fCNMcorrelation in diffuse regions. Modeling the CNM-associated dust column as being maximally polarized, with a polarization fractionpCNM∼ 0.2, we find that the best-fit mean polarization fraction in the WNM-associated dust column is 0.22pCNM. The model further suggests that a significantfCNM-correlated fraction of the non-CNM column (an additional 18.4% of the Himass on average) is also more magnetically ordered, and we speculate that the additional column is associated with the unstable medium. Our results constitute a new large-area constraint on the average relative disorder of magnetic fields between the neutral phases of the interstellar medium, and are consistent with the physical picture of a more magnetically aligned CNM column forming out of a disordered WNM. 
    more » « less
  3. ABSTRACT Polarization of interstellar dust emission is a powerful probe of dust properties and magnetic field structure. Yet studies of external galaxies are hampered by foreground dust contribution. The study aims at separating the polarized signal from the Large Magellanic Cloud (LMC) from that of the Milky Way (MW) to construct a wide-field, spatially complete map of dust polarization using the Planck 353 GHz data. To estimate the foreground polarization direction, we used velocity gradients in H i spectral line data and assessed the performance of the output by comparing to starlight extinction polarization. We estimate the foreground intensity using the dust-to-gas correlation and the average intensity around the LMC and we assume the foreground polarization to be uniform and equal to the average of the MW around the galaxy to derive foreground I, Q, and U parameters. After foreground removal, the geometry of the plane-of-the-sky magnetic field tends to follow the structure of the atomic gas. This is notably the case along the molecular ridges extending south and south-east of the 30 Doradus star-forming complex and along the more diffuse southern arm extending towards the Small Magellanic Cloud. There is also an alignment between the magnetic field and the outer arm in the western part. The median polarization fraction in the LMC is slightly lower than that observed for the MW as well as the anticorrelation between the polarization angle dispersion function and the polarization fraction. Overall, polarization fraction distribution is similar to that observed in the MW. 
    more » « less
  4. For the past decade, the BICEP/Keck collaboration has been operating a series of telescopes at the Amundsen-Scott South Pole Station measuring degree-scale B-mode polarization imprinted in the Cosmic Microwave Background (CMB) by primordial gravitational waves (PGWs). These telescopes are compact refracting polarimeters mapping about 2% of the sky, observing at a broad range of frequencies to account for the polarized foreground from Galactic synchrotron and thermal dust emission. Our latest publication "BK18" utilizes the data collected up to the 2018 observing season, in conjunction with the publicly available WMAP and Planck data, to constrain the tensor-to-scalar ratio r. It particularly includes (1) the 3-year BICEP3 data which is the current deepest CMB polarization map at the foreground-minimum 95 GHz; and (2) the Keck 220 GHz map with a higher signal-to-noise ratio on the dust foreground than the Planck 353 GHz map. We fit the auto- and cross-spectra of these maps to a multicomponent likelihood model (ΛCDM+dust+synchrotron+noise+r) and find it to be an adequate description of the data at the current noise level. The likelihood analysis yields σ(r)=0.009. The inference of r from our baseline model is tightened to r0.05=0.014+0.010−0.011 and r0.05<0.036 at 95% confidence, meaning that the BICEP/Keck B-mode data is the most powerful existing dataset for the constraint of PGWs. The up-coming BICEP Array telescope is projected to reach σ(r)≲0.003 using data up to 2027. 
    more » « less
  5. ABSTRACT We characterize the kinematic and magnetic properties of H i filaments located in a high Galactic latitude region (165° < α < 195° and 12° < δ < 24°). We extract three-dimensional filamentary structures using fil3d from the Galactic Arecibo L-Band Feed Array H i (GALFA-H i) survey 21-cm emission data. Our algorithm identifies coherent emission structures in neighbouring velocity channels. Based on the mean velocity, we identify a population of local and intermediate velocity cloud (IVC) filaments. We find the orientations of the local (but not the IVC) H i filaments are aligned with the magnetic field orientations inferred from Planck 353 GHz polarized dust emission. We analyse position–velocity diagrams of the velocity-coherent filaments, and find that only 15 per cent of filaments demonstrate significant major-axis velocity gradients with a median magnitude of 0.5 km s−1 pc−1, assuming a fiducial filament distance of 100 pc. We conclude that the typical diffuse H i filament does not exhibit a simple velocity gradient. The reported filament properties constrain future theoretical models of filament formation. 
    more » « less