skip to main content


Title: Optimizing quasi-cyclic spatially coupled LDPC codes by eliminating harmful objects
Abstract

It is well known that some harmful objects in the Tanner graph of low-density parity-check (LDPC) codes have a negative impact on their error correction performance under iterative message-passing decoding. Depending on the channel and the decoding algorithm, these harmful objects are different in nature and can be stopping sets, trapping sets, absorbing sets, or pseudocodewords. Differently from LDPC block codes, the design of spatially coupled LDPC codes must take into account the semi-infinite nature of the code, while still reducing the number of harmful objects as much as possible. We propose a general procedure, based onedge spreading, enabling the design of good quasi-cyclic spatially coupled LDPC (QC-SC-LDPC) codes. These codes are derived from quasi-cyclic LDPC (QC-LDPC) block codes and contain a considerably reduced number of harmful objects with respect to the original QC-LDPC block codes. We use an efficient way of enumerating harmful objects in QC-SC-LDPCCs to obtain a fast algorithm that spans the search space of potential candidates to select those minimizing the multiplicity of the target harmful objects. We validate the effectiveness of our method via numerical simulations, showing that the newly designed codes achieve better error rate performance than codes presented in previous literature.

 
more » « less
Award ID(s):
1914635 2145917
NSF-PAR ID:
10434885
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
EURASIP Journal on Wireless Communications and Networking
Volume:
2023
Issue:
1
ISSN:
1687-1499
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we introduce two new methods of mitigating decoder error propagation for low-latency sliding window decoding (SWD) of spatially coupled low density parity check (SC-LDPC) codes. Building on the recently introduced idea of check node (CN) doping of regular SC-LDPC codes, here we employ variable node (VN) doping to fix (set to a known value) a subset of variable nodes in the coupling chain. Both of these doping methods have the effect of allowing SWD to recover from error propagation, at a cost of a slight rate loss. Experimental results show that, similar to CN doping, VN doping improves performance by up to two orders of magnitude compared to undoped SC-LDPC codes in the typical signal-to-noise ratio operating range. Further, compared to CN doping, VN doping has the advantage of not requiring any changes to the decoding process.In addition, a log-likelihood-ratio based window extension algorithm is proposed to reduce the effect of error propagation. Using this approach, we show that decoding latency can be reduced by up to a significant fraction without suffering any loss in performance 
    more » « less
  2. In this paper, we introduce two new methods of mitigating decoder error propagation for low-latency sliding window decoding (SWD) of spatially coupled low-density parity-check (SC-LDPC) codes. Building on the recently introduced idea of check node (CN) doping of regular SC-LDPC codes, here we employ variable node (VN) doping to fix (set to a known value) a subset of variable nodes in the coupling chain. Both of these doping methods have the effect of allowing SWD to recover from error propagation, at a cost of a slight rate loss. Experimental results show that, similar to CN doping, VN doping improves performance by up to two orders of magnitude compared to un-doped SC-LDPC codes in the typical signal-to-noise ratio operating range. Further, compared to CN doping, VN doping has the advantage of not requiring any changes to the decoding process. In addition, a log-likelihood-ratio based window extension algorithm is proposed to reduce the effect of error propagation. Using this approach, we show that decoding latency can be reduced by up to a significant fraction without suffering any loss in performance. 
    more » « less
  3. A novel code construction based on spatially coupled low-density parity-check (SC-LDPC) codes is presented. The proposed code ensembles are comprised of several protographbased chains characterizing individual SC-LDPC codes. We demonstrate that code ensembles obtained by connecting appropriately chosen individual SC-LDPC code chains at specific points have improved iterative decoding thresholds. In addition, the connected chain ensembles have a smaller decoding complexity required to achieve a specific bit error probability compared to individual code chains. Moreover, we demonstrate that, like the individual component chains, the proposed constructions have a typical minimum distance that grows linearly with block length. Finally, we show that the improved asymptotic properties of the connected chain ensembles also translate into improved finite length performance. 
    more » « less
  4. For decoding low-density parity-check (LDPC) codes, the attenuated min-sum algorithm (AMSA) and the offset min-sum algorithm (OMSA) can outperform the conventional min-sum algorithm (MSA) at low signal-to-noise-ratios (SNRs), i.e., in the “waterfall region” of the bit error rate curve. This paper demonstrates that, for quantized decoders, MSA actually outperforms AMSA and OMSA in the “error floor” region, and that all three algorithms suffer from a relatively high error floor. This motivates the introduction of a modified MSA that is designed to outperform MSA, AMSA, and OMSA across all SNRs. The new algorithm is based on the assumption that trapping sets are the major cause of the error floor for quantized LDPC decoders. A performance estimation tool based on trapping sets is used to verify the effectiveness of the new algorithm and also to guide parameter selection. We also show that the implementation complexity of the new algorithm is only slightly higher than that of AMSA or OMSA. Finally, the simulated performance of the new algorithm, using several classes of LDPC codes (including spatially coupled LDPC codes), is shown to outperform MSA, AMSA, and OMSA across all SNRs. 
    more » « less
  5. In this paper, we investigate the problem of decoder error propagation for spatially coupled low-density parity-check (SC-LDPC) codes with sliding window decoding (SWD). This problem typically manifests itself at signal-to-noise ratios (SNRs) close to capacity under low-latency operating conditions. In this case, infrequent but severe decoder error propagation can sometimes occur. To help understand the error propagation problem in SWD of SC-LDPC codes, a multi-state Markov model is developed to describe decoder behavior and to analyze the error performance of spatially coupled LDPC codes under these conditions. We then present two approaches -check node (CN) doping and variable node (VN) doping -to combating decoder error propagation and improving decoder performance. Next we describe how the performance can be further improved by employing an adaptive approach that depends on the availability of a noiseless binary feedback channel. To illustrate the effectiveness of the doping techniques, we analyze the error performance of CN doping and VN doping using the multi-state decoder model. We then present computer simulation results showing that CN and VN doping significantly improve the performance in the operating range of interest at a cost of a small rate loss and that adaptive doping further improves the performance. We also show that the rate loss is always less than that resulting from encoder termination and can be further reduced by doping only a fraction of the VNs at each doping position in the code graph with only a minor impact on performance. Finally, we show how the encoding problem for VN doping can be greatly simplified by doping only systematic bits, with little or no performance loss. 
    more » « less