The UN's Paris Agreement goal of keeping global warming between 1.5 and 2°C is dangerously obsolete and needs to be replaced by a commitment to restore Earth's climate. We now know that continued use of fossil fuels associated with 1.5–2°C scenarios would result in hundreds of millions of pollution deaths and likely trigger multiple tipping elements in the Earth system. Unexpected advances in renewable power production and storage have radically expanded our climate response capacity. The cost of renewable technologies has plummeted at least 30‐year faster than projected, and renewables now dominate energy investment and growth. This
- Award ID(s):
- 2103754
- PAR ID:
- 10434901
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 47
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract renewable revolution creates an opportunity and responsibility to raise our climate ambitions. Rather than aiming for climate mitigation—making things less bad—we should commit to climate restoration—a rapid return to Holocene‐like climate conditions where we know humanity and life on Earth can thrive. Based on observed and projected energy system trends, we estimate that the global economy could reach zero emissions by 2040 and potentially return atmospheric CO2to pre‐industrial levels by 2100–2150. However, this would require an intense and sustained rollout of renewable energy and negative emissions technologies on very large scales. We describe these clean electrification scenarios and outline technical and socioeconomic strategies that would increase the likelihood of restoring a Holocene‐like climate in the next 100 years. We invite researchers, policymakers, regulators, educators, and citizens in all countries to share and promote this positive message of climate restoration for human wellbeing and planetary stability. -
Abstract Climate change mitigation will require substantial investments in renewables. In addition, climate change will affect future renewable supply and hence, power sector investment requirements. We study the implications of climate impacts on renewables for power sector investments under deep decarbonization using a global integrated assessment model. We focus on Latin American and Caribbean, an under-studied region but of great interest due to its strong role in international climate mitigation and vulnerability to climate change. We find that accounting for climate impacts on renewables results in significant additional investments ($12–114 billion by 2100 across Latin American countries) for a region with weak financial infrastructure. We also demonstrate that accounting for climate impacts only on hydropower—a primary focus of previous studies—significantly underestimates cumulative investments, particularly in scenarios with high intermittent renewable deployment. Our study underscores the importance of comprehensive analyses of climate impacts on renewables for improved energy planning.
-
In this perspective on the future of the Arctic, we explore actions taken to mitigate warming and adapt to change since the Paris agreement on the temperature threshold that should not be exceeded in order to avoid dangerous interference with the climate system. Although 5 years may seem too short a time for implementation of major interventions, it actually is a considerable time span given the urgency at which we must act if we want to avoid crossing the 1.5 to <2 °C global warming threshold. Actions required include co-production of research exploring possible futures; supporting Indigenous rights holders’ and stakeholders’ discourse on desired futures; monitoring Arctic change; funding strategic, regional adaptation; and, deep decarbonization through transformation of the energy system coupled with negative carbon emissions. We are now in the decisive decade concerning the future we leave behind for the next generations. The Arctic’s future depends on global action, and in turn, the Arctic plays a critical role in the global future.more » « less
-
Abstract In the lead‐up to the 2015 Conference of Parties meeting in Paris, 186 countries, representing over 95% of global emissions, submitted Nationally Determined Contributions (NDCs). The NDCs outline national goals for greenhouse gas emission reductions and identify financial needs for unfolding mitigation and adaptation efforts. In this study, we review various analyses of the NDCs that cover the aggregate impact and strength of emissions reduction commitments and discuss recent literature on the adequacy and sectoral focus of the NDCs. We then argue that the NDCs are more than just goal setting reports; they are important discursive documents that are contested, negotiated, and ongoing. To supplement the existing literature, we examine the discursive narratives embedded in the NDCs from the 19 founding nations of the Climate Vulnerable Forum and the top 10 greenhouse gas emitters. Our literature review of quantitative and sectoral aspects of the NDCs highlights the inadequacy of the NDC commitments in the context of limiting warming to 2°C, discusses the uncertainties in the promised mitigation strategies, and identifies the reliance of many countries on policies such as those on forests or renewable energy. Our own analysis of the discourses in the NDCs adds critical depth by highlighting the stark contrasts in NDC discourses between North and South, as well as between historical emitters and emerging economies. These contrasts reflect deeper debates regarding justice and equity between nations within the UNFCCC negotiations.
This article is categorized under:
Climate and Development > Decoupling Emissions from Development
-
Abstract Scenarios that limit global warming to below 2 °C by 2100 assume significant land-use change to support large-scale carbon dioxide (CO2) removal from the atmosphere by afforestation/reforestation, avoided deforestation, and Biomass Energy with Carbon Capture and Storage (BECCS). The more ambitious mitigation scenarios require even greater land area for mitigation and/or earlier adoption of CO2removal strategies. Here we show that additional land-use change to meet a 1.5 °C climate change target could result in net losses of carbon from the land. The effectiveness of BECCS strongly depends on several assumptions related to the choice of biomass, the fate of initial above ground biomass, and the fossil-fuel emissions offset in the energy system. Depending on these factors, carbon removed from the atmosphere through BECCS could easily be offset by losses due to land-use change. If BECCS involves replacing high-carbon content ecosystems with crops, then forest-based mitigation could be more efficient for atmospheric CO2removal than BECCS.