Abstract. Previous efforts have used pairs of closely spaced specialized receivers to measure Global Navigation Satellite System (GNSS) signals and to estimate ionospheric irregularity drifts. The relatively high cost associated with commercial GNSS-based ionospheric receivers has somewhat limited their deployment and the estimation of ionospheric drifts. The development of an alternative, low-cost, GNSS-based scintillation monitor (ScintPi) motivated us to investigate the possibility of using it to overcome this limitation. ScintPi monitors can observe signals from geostationary satellites, which can greatly simplify the estimation of the drifts. We present the results of an experiment to evaluate the use of ScintPi 3.0 to estimate ionospheric irregularity drifts. The experiment consisted of two ScintPi 3.0 deployed in Campina Grande, Brazil (7.213° S, 35.907° W; dip latitude ∼ 14° S). The monitors were spaced at a distance of 140 m in the magnetic east–west direction and targeted the estimation of the zonal drifts associated with scintillation-causing equatorial spread F (ESF) irregularities. Routine observations throughout an entire ESF season (September 2022–April 2023) were made as part of the experiment. We focused on the results of irregularity drifts derived from geostationary satellite signals. The results show that the local time variation in the estimated irregularity zonal drifts is in good agreement with previous measurements and with the expected behavior of the background zonal plasma drifts. Our results also reveal a seasonal trend in the irregularity zonal drifts. The trend follows the seasonal behavior of the zonal component of the thermospheric neutral winds as predicted by the Horizontal Wind Model (HMW14). This is explained by the fact that low-latitude ionospheric F-region plasma drifts are controlled, in great part, by Pedersen-conductivity-weighted flux-tube-integrated zonal neutral winds. The results confirm that ScintPi has the potential to contribute to new, cost-effective measurements of ionospheric irregularity drifts, in addition to scintillation and total electron content. Furthermore, the results indicate that these new ScintPi measurements can provide insight into ionosphere–thermosphere coupling.
more »
« less
ScintPi 2.0 and 3.0: low-cost GNSS-based monitors of ionospheric scintillation and total electron content
Abstract We have devoted efforts to the development and performance evaluation of new low-cost ionospheric instruments for studies that require distributed observations and for educational and citizen science initiatives. Here, we report results of some of these efforts. More specifically, we describe the design of new ionospheric sensors based on Global Navigation Satellite System (GNSS) receivers and single-board computers. The first sensor (ScintPi 2.0) is a multi-constellation, single-frequency ionospheric scintillation monitor. The second sensor (ScintPi 3.0) is a multi-constellation, dual-frequency ionospheric scintillation and total electron content (TEC) monitor. Both sensors were created using Raspberry Pi computers and off-the-shelf GNSS receivers. While they are not intended to fully replace commercial ionospheric monitors, they cost a fraction of their price and can be used in various scientific applications. In addition to describing these new sensors, we present examples of observations made by ScintPi 3.0 deployed in Presidente Prudente, Brazil (22.12 S, 51.41 W, − 17.67° dip latitude). These examples show the ability of our system to detect scintillation events and TEC depletions such as those associated with equatorial plasma bubbles. Additionally, our observations were made in parallel with a commercial receiver (Septentrio PolaRx5S), which allowed an evaluation of the scintillation and TEC measurements provided by our system. The comparison shows that ScintPi 3.0 can provide estimates of the amplitude scintillation index (S 4 ) and TEC that are in excellent agreement with those provided by PolaRx5S. We also show an example of the application of ScintPi 3.0 in distributed observations of ionospheric irregularities and scintillation over South America. Graphical Abstract
more »
« less
- Award ID(s):
- 2122639
- PAR ID:
- 10434950
- Date Published:
- Journal Name:
- Earth, Planets and Space
- Volume:
- 74
- Issue:
- 1
- ISSN:
- 1880-5981
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As part of an effort to observe and study ionospheric disturbances and their effects on radio signals used by Global Navigation Satellite Systems (GNSS), alternative low-cost GNSS-based ionospheric scintillation and total electron content (TEC) monitors have been deployed over the American sector. During an inspection of the observations made on 28 August 2022, we found increases in the amplitude scintillation index (S4) reported by the monitors for the period between approximately 17:45 UT and 18:20 UT. The distributed, dual-frequency observations made by the sensors allowed us to determine that the increases in S4were not caused by ionospheric irregularities. Instead, they resulted from Carrier-to-Noise (C/No) variations caused by a solar radio burst (SRB) event that followed the occurrence of two M-class X-ray solar flares and a Halo coronal mass ejection. The measurements also allowed us to quantify the impact of the SRB on GNSS signals. The observations show that the SRB caused maximum C/No fadings of about 8 dB-Hz (12 dB-Hz) on L1 ~ 1.6 GHz (L2 ~ 1.2 GHz) for signals observed by the monitor in Dallas for which the solar zenith angle was minimum (~24.4°) during the SRB. Calculations using observations made by the distributed monitors also show excellent agreement for estimates of the maximum (vertical equivalent) C/No fadings in both L1 and L2. The calculations show maximum fadings of 9 dB-Hz for L1 and of 13 dB-Hz for L2. Finally, the results exemplify the usefulness of low-cost monitors for studies beyond those associated with ionospheric irregularities and scintillation.more » « less
-
null (Ed.)Abstract Ionospheric irregularities can adversely affect the performance of Global Navigation Satellite System (GNSS). However, this opens the possibility of using GNSS as an effective ionospheric remote sensing tool. Despite ionospheric monitoring has been undertaken for decades, these irregularities in multiple spatial and temporal scales are still not fully understood. This paper reviews Virginia Tech’s recent studies on multi-scale ionospheric irregularities using ground-based and space-based GNSS observations. First, the relevant background of ionospheric irregularities and their impact on GNSS signals is reviewed. Next, three topics of ground-based observations of ionospheric irregularities for which GNSS and other ground-based techniques are used simultaneously are reviewed. Both passive and active measurements in high-latitude regions are covered. Modelling and observations in mid-latitude regions are considered as well. Emphasis is placed on the increased capability of assessing the multi-scale nature of ionospheric irregularities using other traditional techniques (e.g., radar, magnetometer, high frequency receivers) as well as GNSS observations (e.g., Total-Electron-Content or TEC, scintillation). Besides ground-based observations, recent advances in GNSS space-based ionospheric measurements are briefly reviewed. Finally, a new space-based ionospheric observation technique using GNSS-based spacecraft formation flying and a differential TEC method is demonstrated using the newly developed Virginia Tech Formation Flying Testbed (VTFFTB). Based on multi-constellation multi-band GNSS, the VTFFTB has been developed into a hardware-in-the-loop simulation testbed with external high-fidelity global ionospheric model(s) for 3-satellite formation flying, which can potentially be used for new multi-scale ionospheric measurement mission design.more » « less
-
Abstract We report an extraordinary L‐band scintillation event detected in the American sector on the night of 23–24 March 2023. The event was detected using observations distributed from the magnetic equator to mid latitudes. The observations were made by ionospheric scintillation and total electron content (TEC) monitors deployed at the Jicamarca Radio Observatory (JRO, ∼−1° dip latitude), at the Costa Rica Institute of Technology (CRT, ∼20° dip latitude), and at The University of Texas at Dallas (UTD, ∼42° dip latitude). The observations show intense pre‐ and post‐midnight scintillations at JRO, a magnetic equatorial site where L‐band scintillation is typically weak and limited to pre‐midnight hours. The observations also show long‐lasting extremely intense L‐band scintillations detected by the CRT monitor. Additionally, the rare occurrence of intense mid‐latitude scintillation was detected by the UTD monitor around local midnight. Understanding of the ionospheric conditions leading to scintillation was assisted by TEC and rate of change of TEC index (ROTI) maps. The maps showed that the observed scintillation event was caused by equatorial plasma bubble (EPB)‐like ionospheric depletions reaching mid latitudes. TEC maps also showed the occurrence of an enhanced equatorial ionization anomaly throughout the night indicating the action of disturbance electric fields and creating conditions that favor the occurrence of severe scintillation. Additionally, the ROTI maps confirm the occurrence of pre‐ and post‐midnight EPBs that can explain the long duration of low latitude scintillation. The observations describe the spatio‐temporal variation and quantify the severity of the scintillation impact of EPB‐like disturbances reaching mid latitudes.more » « less
-
Abstract A new observational phenomenon, named Simultaneous Global Ionospheric Density Disturbance (SGD), is identified in GNSS total electron content (TEC) data during periods of three typical geospace disturbances: a Coronal Mass Ejection‐driven severe disturbance event, a high‐speed stream event, and a minor disturbance day with a maximum Kp of 4. SGDs occur frequently on dayside and dawn sectors, with a ∼1% TEC increase. Notably, SGDs can occur under minor solar‐geomagnetic disturbances. SGDs are likely caused by penetration electric fields (PEFs) of solar‐geomagnetic origin, as they are associated with Bz southward, increased auroral AL/AU, and solar wind pressure enhancements. These findings offer new insights into the nature of PEFs and their ionospheric impact while confirming some key earlier results obtained through alternative methods. Importantly, the accessibility of extensive GNSS networks, with at least 6,000 globally distributed receivers for ionospheric research, means that rich PEF information can be acquired, offering researchers numerous opportunities to investigate geospace electrodynamics.more » « less
An official website of the United States government

