Abstract Plasma irregularities in the ionosphere induce scintillation of radio signals. Radio occultation (RO) observations of the Global Navigation Satellite Systems (GNSS) signals from low Earth orbit (LEO) allow monitoring of the ionospheric scintillation. Under certain conditions, it is possible to localize (geolocate) plasma irregularities along the line‐of‐sight between the GNSS and LEO satellites. While several techniques have been considered for the localization, in this study we use the back propagation (BP) of complex RO signals (phase and amplitude) measured at a high rate (HR), 50–100 Hz. Our method is based on a numerical solution of the wave equation, originally proposed for geolocation in 2002, with some modifications. We consider theoretical aspects of the BP technique, including assumptions, approximations and limitations, and perform numerical modeling of radio wave propagation. We investigate geolocation by BP for two regions with aligned and mis‐aligned irregularities and explain multi‐valued geolocations. We focus on the equatorial F region, consistent with the COSMIC‐2 observation sampling and use the IGRF‐13 model of the Earth's magnetic field to define the orientation of plasma irregularities. We use our method for processing of COSMIC‐2 HR scintillation data collected from the precise orbit determination antennas for 2 years: 2021 and 2023 (years with low and high solar activity). The results, represented by gridded monthly maps of geolocations, show clear seasonal and interannual variations. Additionally, we present comparison of the geolocations obtained independently from L1 and L2 signals for a 2‐month period.
more »
« less
On the detection of a solar radio burst event that occurred on 28 August 2022 and its effect on GNSS signals as observed by ionospheric scintillation monitors distributed over the American sector
As part of an effort to observe and study ionospheric disturbances and their effects on radio signals used by Global Navigation Satellite Systems (GNSS), alternative low-cost GNSS-based ionospheric scintillation and total electron content (TEC) monitors have been deployed over the American sector. During an inspection of the observations made on 28 August 2022, we found increases in the amplitude scintillation index (S4) reported by the monitors for the period between approximately 17:45 UT and 18:20 UT. The distributed, dual-frequency observations made by the sensors allowed us to determine that the increases in S4were not caused by ionospheric irregularities. Instead, they resulted from Carrier-to-Noise (C/No) variations caused by a solar radio burst (SRB) event that followed the occurrence of two M-class X-ray solar flares and a Halo coronal mass ejection. The measurements also allowed us to quantify the impact of the SRB on GNSS signals. The observations show that the SRB caused maximum C/No fadings of about 8 dB-Hz (12 dB-Hz) on L1 ~ 1.6 GHz (L2 ~ 1.2 GHz) for signals observed by the monitor in Dallas for which the solar zenith angle was minimum (~24.4°) during the SRB. Calculations using observations made by the distributed monitors also show excellent agreement for estimates of the maximum (vertical equivalent) C/No fadings in both L1 and L2. The calculations show maximum fadings of 9 dB-Hz for L1 and of 13 dB-Hz for L2. Finally, the results exemplify the usefulness of low-cost monitors for studies beyond those associated with ionospheric irregularities and scintillation.
more »
« less
- Award ID(s):
- 2122639
- PAR ID:
- 10521473
- Publisher / Repository:
- EDP Sciences
- Date Published:
- Journal Name:
- Journal of Space Weather and Space Climate
- Volume:
- 13
- ISSN:
- 2115-7251
- Page Range / eLocation ID:
- 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract While low and high‐latitude ionospheric scintillation have been extensively reported, significantly less information is available about the properties of and conditions leading to mid‐latitude scintillations. Here, we report and discuss scintillation observations made in the Southern United States (UT Dallas, 32.99°N, 96.76°W, 43.2°N dip latitude) on June 1st, 2013. The measurements were made by a specialized dual‐frequency GPS‐based scintillation monitor which allowed us to determine main properties of this mid‐latitude scintillation event. Additionally, simultaneous airglow observations and ionospheric total electron content (TEC) maps provided insight on the conditions leading to observed scintillations. Moderate amplitude scintillations (S4>∼0.4) occurred in both L1 and L2C signals, and severe (S4 > ∼0.8) events occurred in L2C signals at low (<30°) elevation angles. Phase scintillation accompanied amplitude fadings, with maximum σϕvalues exceeding 0.5 radians in L2C. We also show that the observed phase scintillation magnitudes increased with amplitude scintillation severity. Decorrelation times were mostly between 0.25 and 1.25 s, with mean value around 0.65 s for both L1 and L2C. Frequency scaling of S4matched fairly well the predictions of weak scattering theory but held for observations of moderate and strong amplitude scintillation as well. Scintillation occurred during the main phase of a modest magnetic storm that, nevertheless, prompted an extreme equatorward movement of the mid‐latitude trough and large background TEC enhancements over the US. Scintillations, however, occurred within TEC and airglow depletions observed over Texas. Finally, scintillation properties including severity and rapidity, and associated TEC signatures are comparable to those associated with equatorial spread F.more » « less
-
Abstract We have devoted efforts to the development and performance evaluation of new low-cost ionospheric instruments for studies that require distributed observations and for educational and citizen science initiatives. Here, we report results of some of these efforts. More specifically, we describe the design of new ionospheric sensors based on Global Navigation Satellite System (GNSS) receivers and single-board computers. The first sensor (ScintPi 2.0) is a multi-constellation, single-frequency ionospheric scintillation monitor. The second sensor (ScintPi 3.0) is a multi-constellation, dual-frequency ionospheric scintillation and total electron content (TEC) monitor. Both sensors were created using Raspberry Pi computers and off-the-shelf GNSS receivers. While they are not intended to fully replace commercial ionospheric monitors, they cost a fraction of their price and can be used in various scientific applications. In addition to describing these new sensors, we present examples of observations made by ScintPi 3.0 deployed in Presidente Prudente, Brazil (22.12 S, 51.41 W, − 17.67° dip latitude). These examples show the ability of our system to detect scintillation events and TEC depletions such as those associated with equatorial plasma bubbles. Additionally, our observations were made in parallel with a commercial receiver (Septentrio PolaRx5S), which allowed an evaluation of the scintillation and TEC measurements provided by our system. The comparison shows that ScintPi 3.0 can provide estimates of the amplitude scintillation index (S4) and TEC that are in excellent agreement with those provided by PolaRx5S. We also show an example of the application of ScintPi 3.0 in distributed observations of ionospheric irregularities and scintillation over South America. Graphical Abstractmore » « less
-
Abstract This paper surveys six years of Global Positioning System (GPS) L1 and L2C ionospheric scintillation in the auroral zone and, with a collocated incoherent scatter radar, hypothesizes the ionospheric irregularity layer. The Scintillation Auroral GPS Array of six scintillation receivers is sited at Poker Flat Research Range, Alaska, as is the Poker Flat incoherent scatter radar (PFISR). Scintillation intervals are identified across at least four receivers of the array using S4 and sigma phi (σϕ) indices at 100 s cadence. Classification as “amplitude,” “phase,” or “both‐phase‐and‐amplitude” scintillation is performed by analyzing common time intervals of elevated S4 andσϕ. Scattering of Global Navigation Satellite System (GNSS) waves by refractive or diffractive effects is hypothesized to occur in the E or F layer, or a transition layer in between, based on the PFISR peak density altitude at the time of the scintillation event. We analyze the statistics of the irregularity layer from 2014 to 2019, spanning solar maximum to solar minimum. We find fewer scintillation events per day with the waning solar cycle, nearly all of them phase scintillations. We also find that the percentage of events hypothesized to be caused by irregularities in the E layer increases with the declining solar cycle. The local time dependence of phase scintillations is primarily at night and in the E layer. Phase scintillation events occurring during daytime occur at solar maximum and are nearly all in the F layer. The majority of the events containing amplitude scintillations are daytime F layer at solar maximum (2014).more » « less
-
Abstract The occurrence of plasma irregularities and ionospheric scintillation over the Caribbean region have been reported in previous studies, but a better understanding of the source and conditions leading to these events is still needed. In December 2021, three ground-based ionospheric scintillation and Total Electron Content monitors were installed at different locations over Puerto Rico to better understand the occurrence of ionospheric irregularities in the region and to quantify their impact on transionospheric signals. Here, the findings for an event that occurred on March 13–14, 2022 are reported. The measurements made by the ground-based instrumentation indicated that ionospheric irregularities and scintillation originated at low latitudes and propagated, subsequently, to mid-latitudes. Imaging of the ionospheric F-region over a wide range of latitudes provided by the GOLD mission confirmed, unequivocally, that the observed irregularities and the scintillation were indeed caused by extreme equatorial plasma bubbles, that is, bubbles that reach abnormally high apex heights. The joint ground- and space-based observations show that plasma bubbles reached apex heights exceeding 2600 km and magnetic dip latitudes beyond 28 ° . In addition to the identification of extreme plasma bubbles as the source of the ionospheric perturbations over low-to-mid latitudes, GOLD observations also provided experimental evidence of the background ionospheric conditions leading to the abnormally high rise of the plasma bubbles and to severe L-band scintillation. These conditions are in good agreement with the theoretical hypothesis previously proposed. Graphical Abstractmore » « less