skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RL-LABEL: A Deep Reinforcement Learning Approach Intended for AR Label Placement in Dynamic Scenarios
Labels are widely used in augmented reality (AR) to display digital information. Ensuring the readability of AR labels requires placing them occlusion-free while keeping visual linkings legible, especially when multiple labels exist in the scene. Although existing optimization-based methods, such as force-based methods, are effective in managing AR labels in static scenarios, they often struggle in dynamic scenarios with constantly moving objects. This is due to their focus on generating layouts optimal for the current moment, neglecting future moments and leading to sub-optimal or unstable layouts over time. In this work, we present RL-LABEL, a deep reinforcement learning-based method for managing the placement of AR labels in scenarios involving moving objects. RL-LABEL considers the current and predicted future states of objects and labels, such as positions and velocities, as well as the user’s viewpoint, to make informed decisions about label placement. It balances the trade-offs between immediate and long-term objectives. Our experiments on two real-world datasets show that RL-LABEL effectively learns the decision-making process for long-term optimization, outperforming two baselines (i.e., no view management and a force-based method) by minimizing label occlusions, line intersections, and label movement distance. Additionally, a user study involving 18 participants indicates that RL-LABEL excels over the baselines in aiding users to identify, compare, and summarize data on AR labels within dynamic scenes.  more » « less
Award ID(s):
2107328
PAR ID:
10435037
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE transactions on visualization and computer graphics
ISSN:
1941-0506
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Learning from label proportions (LLP) is a weakly supervised classification problem where data points are grouped into bags, and the label proportions within each bag are observed instead of the instance-level labels. The task is to learn a classifier to predict the labels of future individual instances. Prior work on LLP for multi-class data has yet to develop a theoretically grounded algorithm. In this work, we propose an approach to LLP based on a reduction to learning with label noise, using the forward correction (FC) loss of Patrini et al. [30]. We establish an excess risk bound and generalization error analysis for our approach, while also extending the theory of the FC loss which may be of independent interest. Our approach demonstrates improved empirical performance in deep learning scenarios across multiple datasets and architectures, compared to the leading methods. 
    more » « less
  2. Learning from label proportions (LLP) is a weakly supervised classification problem where data points are grouped into bags, and the label proportions within each bag are observed instead of the instance-level labels. The task is to learn a classifier to predict the labels of future individual instances. Prior work on LLP for multi-class data has yet to develop a theoretically grounded algorithm. In this work, we propose an approach to LLP based on a reduction to learning with label noise, using the forward correction (FC) loss of Patrini et al. [30]. We establish an excess risk bound and generalization error analysis for our approach, while also extending the theory of the FC loss which may be of independent interest. Our approach demonstrates improved empirical performance in deep learning scenarios across multiple datasets and architectures, compared to the leading methods. 
    more » « less
  3. We study deep neural networks for the multi-label classification (MLab) task through the lens of neural collapse (NC). Previous works have been restricted to the multi-class classification setting and discovered a prevalent NC phenomenon comprising of the following properties for the last-layer features: (i) the variability of features within every class collapses to zero, (ii) the set of feature means form an equi-angular tight frame (ETF), and (iii) the last layer classifiers collapse to the feature mean upon some scaling. We generalize the study to multi-label learning, and prove for the first time that a generalized NC phenomenon holds with the "pick-all-label'' formulation, which we term as MLab NC. While the ETF geometry remains consistent for features with a single label, multi-label scenarios introduce a unique combinatorial aspect we term the "tag-wise average" property, where the means of features with multiple labels are the scaled averages of means for single-label instances. Theoretically, under proper assumptions on the features, we establish that the only global optimizer of the pick-all-label cross-entropy loss satisfy the multi-label NC. In practice, we demonstrate that our findings can lead to better test performance with more efficient training techniques for MLab learning. 
    more » « less
  4. There is a long-existing trade-off between the imaging resolution and penetration depth in acoustic imaging caused by the diffraction limit. Most existing approaches addressing this trade-off require controlled “labels,” i.e., metamaterials or contrast agents, to be deposited close to the objects and to either remain static or be tracked precisely during imaging. We propose a “blind-label” approach for acoustic subwavelength imaging. The blind labels are randomly distributed acoustic scatterers with deep-subwavelength sizes whose exact locations and trajectories are not necessary information in image reconstruction. The proposed method achieves the resolution of 0.24 wavelengths in ultrasound imaging experiments and 0.2 wavelengths in simulations, providing over 10 times improvement compared to the diffraction limit. We also elucidate the influence of scatterer size and concentration on imaging performance. The proposed “blind-label” approach relaxes the restrictions of existing acoustic subwavelength imaging technologies relying on controlled labels, therefore substantially improving the practicality of acoustic subwavelength imaging in biomedical ultrasound imaging, sonar, and nondestructive testing. 
    more » « less
  5. In label-noise learning, estimating the transition matrix is a hot topic as the matrix plays an important role in building statistically consistent classifiers. Traditionally, the transition from clean labels to noisy labels (i.e., clean-label transition matrix (CLTM)) has been widely exploited to learn a clean label classifier by employing the noisy data. Motivated by that classifiers mostly output Bayes optimal labels for prediction, in this paper, we study to directly model the transition from Bayes optimal labels to noisy labels (i.e., Bayes-label transition matrix (BLTM)) and learn a classifier to predict Bayes optimal labels. Note that given only noisy data, it is ill-posed to estimate either the CLTM or the BLTM. But favorably, Bayes optimal labels have less uncertainty compared with the clean labels, i.e., the class posteriors of Bayes optimal labels are one-hot vectors while those of clean labels are not. This enables two advantages to estimate the BLTM, i.e., (a) a set of examples with theoretically guaranteed Bayes optimal labels can be collected out of noisy data; (b) the feasible solution space is much smaller. By exploiting the advantages, we estimate the BLTM parametrically by employing a deep neural network, leading to better generalization and superior classification performance. 
    more » « less