The objective of this paper is to provide a holistic summary of ongoing research related to the development, implementation, assessment, and continuous refinement of an augmented reality (AR) app known as Vectors in Space. This Unity-based app was created by the authors and provides a self-guided learning experience for students to learn about fundamental vector concepts routinely encountered in undergraduate physics and engineering mechanics courses. Vectors are a fundamental tool in mechanics courses as they allow for the precise and comprehensive description of physical phenomena such as forces, moments, and motion. In early engineering coursework, students often perceive vectors as an abstract mathematical concept that requires spatial visualization skills in three dimensions (3D). The app aims to allow students to build these tacit skills while simultaneously allowing them to learn fundamental vector concepts that will be necessary in subsequent coursework. Three self-paced, guided learning activities systematically address concepts that include: (a) Cartesian components of vectors, (b) unit vectors and directional angles, (c) addition, (d) subtraction, (e) cross product using the right-hand rule, (f) angle between vectors using the dot product, and (g) vector projections using the dot product. The authors first discuss the app's scaffolding approach with special attention given to the incorporation of Mayer's principles of multimedia learning as well as the use of animations. The authors' approach to develop the associated statics learning activities, practical aspects of implementation, and lessons learned are shared. The effectiveness of the activities is assessed by applying analysis of covariance (ANCOVA) to pre- and post-activity assessment scores for control and treatment groups. Though the sample sizes are relatively small (less than 50 students), the results demonstrate that AR had a positive impact on student learning of the dot product and its applications. Larger sample sizes and refinements to the test instruments will be necessary in the future to draw robust conclusions regarding the other vector topics and operations. Qualitative feedback from student focus groups conducted with undergraduate engineering students identified the app's strengths as well as potential areas of improvement.
more »
« less
In-Situ Bending Moment Visualization of a Structure Using Augmented Reality and Real-Time Object Detection
A critical learning outcome of undergraduate engineering mechanics courses is the ability to understand how a structure's internal forces and bending moment will change in response to static and dynamic loads. One of the major challenges associated with both teaching and learning these concepts is the invisible nature of the internal effects. Although concentrated forces applied to the top of the beam can be easily visualized, observing the corresponding changes in the shear and bending moment diagrams is not a trivial task. Nonetheless, proficiency in this concept is vital for students to succeed in subsequent mechanics courses and, ultimately, as a professional practitioner. One promising technology that can enable students to see the invisible internal effects is augmented reality (AR), where virtual or digital objects can be seen through a device such as a smart phone or headset. This paper describes the proof-of-concept development of a Unity®-based AR application called "AR Stairs" that allows students to visualize (in-situ) the relative magnitude of the internal bending moment in an actual structure. The app is specifically tailored to an existing 40-foot long, 16-foot high steel staircase structure located at the authors' institution. This paper details the application design, analysis assumptions, calculations, technical challenges encountered, development environment, and content development. The key features of the app are discussed, which include: (a) coordinate system identification and placement, (b) automatic mapping of a stairs model in-situ, (c) creation of a virtual 2-dimensional staircase model, (d) object detection and tracking of people moving on the stairs, (e) image recognition to approximate people's weight, (f) overlays of virtual force vectors onto moving people, and (g) use of a chromatic scale to visually convey the relative intensity of the internal bending moment at nodes spaced over the length of the structure. It is the authors' intention to also provide the reader with an overall picture of the resources needed to develop AR applications for use in pedagogical settings, the design decision tradeoffs, and practical issues related to deployment. As AR technologies continually improve, they are expected to become an integral part of the pedagogical toolset used by engineering educators to improve the quality of education delivered to engineering students.
more »
« less
- Award ID(s):
- 2141984
- PAR ID:
- 10469474
- Publisher / Repository:
- American Society for Engineering Education
- Date Published:
- Subject(s) / Keyword(s):
- Augmented reality beam mechanics structural analysis technology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Mastering the concept of distributed forces is vital for students who are pursuing a major involving engineering mechanics. Misconceptions related to distributed forces that are typically acquired in introductory Physics courses should be corrected to increase student success in subsequent mechanics coursework. The goal of this study was to develop and assess a guided instructional activity using augmented reality (AR) technology to improve undergraduate engineering students' understanding of distributed forces. The AR app was accompanied by a complementary activity to guide and challenge students to model objects as beams with progressively increasing difficulty. The AR tool allowed students to (a) model a tabletop as a beam with multiple distributed forces, (b) visualize the free body diagram, and (c) compute the external support reactions. To assess the effectiveness of the activity, 43 students were allocated to control and treatment groups using an experimental nonequivalent groups preactivity/postactivity test design. Of the 43 students, 35 participated in their respective activity. Students in the control group collaborated on traditional problem‐solving, while those in the treatment group engaged in a guided activity using AR. Students' knowledge of distributed forces was measured using their scores on a 10‐item test instrument. Analysis of covariance was utilized to analyze postactivity test scores by controlling for the preactivity test scores. The treatment group demonstrated a significantly greater improvement in postactivity test scores than that of the control group. The measured effect size was 0.13, indicating that 13% of the total variance in the postactivity test scores can be attributed to the activity. Though the effect size was small, the results suggest that a guided AR activity can be more effective in improving student learning outcomes than traditional problem‐solving.more » « less
-
In traditional mechanics-oriented classes, experience and the literature have shown that students are often challenged with conceptualizing complex three-dimensional behavior. Within the context of structural engineering and mechanics, the challenges manifest in scenarios related to linking this three-dimensional behavior with member response such as elastic buckling of columns and critical locations for shear and moment. While solutions such as props and videos have been used as examples in the past with some success, these tools do not spatially represent complex structural behaviors and are also limited to one-way interaction where the learner receives the information but cannot interact with the tools. This project leverages mobile augmented reality (AR) designed to help students visualize complex behaviors (deformation, strain, and stress) structural components with various loading and boundary conditions. The tool, STRUCT-AR utilizes finite element models pre-loaded into a mobile AR application that allows users to interact and engage with the models on their mobile device or tablet. Our vision of this technology is to provide a complementary teaching tool for enhancing personalized learning wherein students can leverage the technology as a learning companion both within the classroom and outside to better understand structural behaviors and mechanisms that are challenging to convey in a traditional 2D learning environment. This study uses a pilot study to evaluate how undergraduate and graduate students who have previously taken an introductory course on structural system design perceived the app. The purpose of this pilot study is to evaluate the usability of the app, its ability to improve spatial visualization ability, and to collect feedback on the app functionality. Study participants were asked to complete a pre and post-survey and the IBM Post-Study System Usability Questionnaire after engaging with the AR app on an iOS tablet. Results discuss how participants viewed the app in terms of its usability and usefulness and recommendations for tool refinement. Future work will be focused on conducting another pilot study after tool refinement before app deployment in a classroom setting.more » « less
-
Augmented reality (AR) is a technology that integrates 3D virtual objects into the physical world in real-time, while virtual reality (VR) is a technology that immerses users in an interactive 3D virtual environment. The fast development of augmented reality (AR) and virtual reality (VR) technologies has reshaped how people interact with the physical world. This presentation will outline the results from two unique AR and one Web-based VR coastal engineering projects, motivating the next stage in the development of the augmented reality package for coastal students, engineers, and planners.more » « less
-
ABSTRACT As technological advances appear, it is desirable to integrate them into new engineering education teaching methods, aiming to enhance students' comprehension and engagement with complex subjects. Augmented reality (AR) emerges as a promising tool in this effort, offering students opportunities to visualize and conceptualize challenging topics that are otherwise too abstract or difficult to grasp. Within civil engineering curriculums, structural analysis, a junior‐level course forming the foundation of many other courses, poses challenges in visualization and understanding. This paper investigates the development of a mobile AR application intended to improve the conceptual understanding of structural analysis material. This application is designed to overlay schematic representations of structural components (i.e., beams, columns, frames, and trusses) onto images of iconic local campus buildings, allowing students to interactively explore exaggerated deflections and internal and external forces under various loading conditions. By contextualizing structural analysis calculations within familiar settings, the goal is to leverage a sense of relevance and place‐based attachments in students' learning. Furthermore, the paper examines the development process and usability of the AR application, providing insights into its implementation in educational settings. Experimental results, including comparisons with a control group, are analyzed to assess the efficacy of the AR application in improving students' understanding of structural analysis concepts. Furthermore, the paper examines the development process and usability of the AR application, providing insights into its implementation in educational settings. Perspectives from structural analysis faculty members are also discussed, shedding light on the potential benefits and challenges associated with integrating AR technology into engineering education. In addition, the study highlights the value of place‐based learning, wherein students engage with real‐world structures in their immediate environment, fostering deeper connections between theoretical concepts and practical applications. Overall, this research contributes to the growing body of literature on innovative teaching approaches in engineering education and highlights the potential of AR as a valuable tool for enhancing student learning experiences in structural analysis and related disciplines.more » « less
An official website of the United States government
