skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sensitivity of confinement losses in optical fibers to modeling approach
A prime objective of modeling optical fibers is capturing mode confinement losses correctly. This paper demonstrates that specific modeling choices, especially regarding the outer fiber cladding regions and the placement of the computational boundary, have significant impacts on the calculated mode losses. This sensitivity of the computed mode losses is especially high for microstructure fibers that do not guide light by total internal reflection. Our results illustrate that one can obtain disparate mode confinement loss profiles for the same optical fiber design simply by moving the boundary to a new material region. We conclude with new recommendations for how to better model these losses.  more » « less
Award ID(s):
1912779 2136228
PAR ID:
10435154
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
31
Issue:
16
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 26735
Size(s):
Article No. 26735
Sponsoring Org:
National Science Foundation
More Like this
  1. Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion, and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly >10  dB/facet) has dominated the total insertion losses of typical LN photonic integrated circuits, where on-chip losses can be as low as 0.03–0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetrically guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open the door for practical integrated LN photonic circuits efficiently interfaced with optical fibers. 
    more » « less
  2. Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion, and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly > 10    dB / facet ) has dominated the total insertion losses of typical LN photonic integrated circuits, where on-chip losses can be as low as 0.03–0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetrically guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open the door for practical integrated LN photonic circuits efficiently interfaced with optical fibers. 
    more » « less
  3. Optical fiber is increasingly used for both communication and distributed sensing of temperature and strain in environmental studies. In this work, we demonstrate the viability of unreinforced fiber tethers (bare fiber) for Raman-based distributed temperature sensing in deep ocean and deep ice environments. High-pressure testing of single-mode and multimode optical fiber showed little to no changes in light attenuation over pressures from atmospheric to 600 bars. Most importantly, the differential attenuation between Stokes and anti-Stokes frequencies, critical for the evaluation of distributed temperature sensing, was shown to be insignificantly affected by fluid pressures over the range of pressures tested for single-mode fiber, and only very slightly affected in multimode fiber. For multimode fiber deployments to ocean depths as great as 6000 m, the effect of pressure-dependent differential attenuation was shown to impact the estimated temperatures by only 0.15 °K. These new results indicate that bare fiber tethers, in addition to use for communication, can be used for distributed temperature or strain in fibers subjected to large depth (pressure) in varying environments such as deep oceans, glaciers and potentially the icy moons of Saturn and Jupiter. 
    more » « less
  4. We present an analytical and numerical study of electromagnetic modes in micro- and nano-fibers (MNFs) where the electric and magnetic fields of the modes are not necessarily orthogonal to each other. We first investigate these modes for different fiber structures including circular- and rectangular-core fibers as well as photonic crystal fibers. We then discuss two specific applications of these modes: (1) generation of hypothetical axions that are coupled to the electromagnetic fields through the dot product of electric and magnetic fields of a mode,E→⋅B→, and (2) a new type of optical trap (optical tweezers) for chiral atoms with magneto-electric cross coupling, where the confining potential again is proportional toE→⋅B→. 
    more » « less
  5. Abstract Carbon nanotube (CNT)‐reinforced polymer fibers have broad applications in electrical, thermal, optical, and smart applications. The key for mechanically robust fibers is the precise microstructural control of these CNTs, including their location, dispersion, and orientation. A new methodology is presented here that combines dry‐jet‐wet spinning and forced assembly for scalable fabrication of fiber composites, consisting of alternating layers of polyacrylonitrile (PAN) and CNT/PAN. The thickness of each layer is controlled during the multiplication process, with resolutions down to the nanometer scale. The introduction of alternating layers facilitates the quality of CNT dispersion due to nanoscale confinement, and at the same time, enhances their orientation due to shear stress generated at each layer interface. In a demonstration example, with 0.5 wt% CNTs loading and the inclusion of 170 nm thick layers, a composite fiber shows a significant mechanical enhancement, namely, a 46.4% increase in modulus and a 39.5% increase in strength compared to a pure PAN fiber. Beyond mechanical reinforcement, the presented fabrication method is expected to have enormous potential for scalable fabrication of polymer nanocomposites with complex structural features for versatile applications. 
    more » « less