skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Global nitrogen deposition inputs to cropland at national scale from 1961 to 2020
Abstract

Nitrogen (N) deposition is a significant nutrient input to cropland and consequently important for the evaluation of N budgets and N use efficiency (NUE) at different scales and over time. However, the spatiotemporal coverage of N deposition measurements is limited globally, whereas modeled N deposition values carry uncertainties. Here, we reviewed existing methods and related data sources for quantifying N deposition inputs to crop production on a national scale. We utilized different data sources to estimate N deposition input to crop production at national scale and compared our estimates with 14 N budget datasets, as well as measured N deposition data from observation networks in 9 countries. We created four datasets of N deposition inputs on cropland during 1961–2020 for 236 countries. These products showed good agreement for the majority of countries and can be used in the modeling and assessment of NUE at national and global scales. One of the datasets is recommended for general use in regional to global N budget and NUE estimates.

 
more » « less
Award ID(s):
2025826 2047165
PAR ID:
10435172
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
10
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spatiotemporal patterns of crop nitrogen (N) budget have important implications for agricultural N management and environmental policy. Previous studies examined crop N budget in different countries but often overlooked cross‐crop differences at sub‐national scales. In this study, we synthesize multiple databases to examine the N budget of eight major crops in the United States at the county scale during 1970–2019. Our analyses show that national crop N use efficiency (NUE) increased from 0.55 kg N kg−1 N in the 1970s to 0.65 kg N kg−1 N in the 2010s. Four out of eight crops such as corn, rice, cotton, and sorghum demonstrated an increasing NUE trend during the study period, whereas the other crops overall presented a declining NUE trend. Nationwide, about 41% of the total N input was not used by these crops (i.e., N surplus) over the study period, of which temporal variation was mainly driven by corn due to its large planting area and high N input. The national N surplus first increased in the 1970s and remained relatively stable till the 2000s. Since the early 2010s, however, N surplus began to decline and approached the levels in the early 1970s—an encouraging development that may lead to decreased N pollution to the environment. The hotspots of national N surplus coincided with corn‐ and rice‐producing counties. The sub‐national variations and temporal dynamics in crop N budget revealed in this study highlight the urgent need to understand the farm‐level crop N balance and the dominant factors controlling crop NUE for mitigating N pollution.

     
    more » « less
  2. Abstract. Excessive anthropogenic nitrogen (N) inputs to the biosphere have disruptedthe global nitrogen cycle. To better quantify the spatial and temporalpatterns of anthropogenic N inputs, assess their impacts on thebiogeochemical cycles of the planet and the living organisms, and improvenitrogen use efficiency (NUE) for sustainable development, we have developeda comprehensive and synthetic dataset for reconstructing the History ofanthropogenic Nitrogen inputs (HaNi) to the terrestrial biosphere. The HaNi datasettakes advantage of different data sources in a spatiotemporally consistentway to generate a set of high-resolution gridded N input products from thepreindustrial period to the present (1860–2019). The HaNi dataset includes annual ratesof synthetic N fertilizer, manure application/deposition, and atmospheric Ndeposition on cropland, pasture, and rangeland at a spatial resolution of5 arcmin × 5 arcmin. Specifically, the N inputs are categorized, according to the Nforms and land uses, into 10 types: (1) NH4+-N fertilizer applied to cropland,(2) NO3--N fertilizer applied to cropland, (3) NH4+-N fertilizer applied to pasture,(4) NO3--N fertilizer applied to pasture, (5) manure N application oncropland, (6) manure N application on pasture, (7) manure N deposition onpasture, (8) manure N deposition on rangeland, (9) NHx-N deposition, and(10) NOy-N deposition. The total anthropogenic N (TN) inputs to globalterrestrial ecosystems increased from 29.05 Tg N yr−1 in the 1860s to267.23 Tg N yr−1 in the 2010s, with the dominant N source changing fromatmospheric N deposition (before the 1900s) to manure N (in the 1910s–2000s)and then to synthetic fertilizer in the 2010s. The proportion of syntheticNH4+-N in fertilizer input increased from 64 %in the 1960s to 90 % in the 2010s, while synthetic NO3--N fertilizerdecreased from 36 % in the 1960s to 10 % in the 2010s. Hotspots of TNinputs shifted from Europe and North America to East and South Asia duringthe 1960s–2010s. Such spatial and temporal dynamics captured by the HaNidataset are expected to facilitate a comprehensive assessment of the coupledhuman–Earth system and address a variety of social welfare issues, such as theclimate–biosphere feedback, air pollution, water quality, and biodiversity. Thedata are available at https://doi.org/10.1594/PANGAEA.942069(Tian et al., 2022). 
    more » « less
  3. Abstract. Nutrient budgets help to identify the excess or insufficient use of fertilizers and other nutrient sources in agriculture. They allow for the calculation of indicators, such as the nutrient balance (surplus if positive or deficit if negative) and nutrient use efficiency, that help to monitor agricultural productivity and sustainability across the world. We present a global database of country-level budget estimates for nitrogen (N), phosphorus (P) and potassium (K) on cropland. The database, disseminated in FAOSTAT, is meant to provide a global reference, synthesizing and continuously updating the state of the art on this topic. The database covers 205 countries and territories, as well as regional and global aggregates, for the period from 1961 to 2020. Results highlight the wide range in nutrient use and nutrient use efficiencies across geographic regions, nutrients, and time. The average N balance on global cropland has remained fairly steady at about 50–55 kg ha−1 yr−1 during the past 15 years, despite increasing N inputs. Regional trends, however, show recent average N surpluses that range from a low of about 10 kg N ha−1 yr−1 in Africa to more than 90 kg N ha−1 yr−1 in Asia. Encouragingly, average global cropland N use efficiency decreased from about 59 % in 1961 to a low of 43 % in 1988, but it has risen since then to a level of 55 %. Phosphorus deficits are mainly found in Africa, whereas potassium deficits occur in Africa and the Americas. This study introduces improvements over previous work in relation to the key nutrient coefficients affecting nutrient budgets and nutrient use efficiency estimates, especially with respect to nutrient removal in crop products, manure nutrient content, atmospheric deposition and crop biological N fixation rates. We conclude by discussing future research directions and highlighting the need to align statistical definitions across research groups as well as to further refine plant and livestock coefficients and expand estimates to all agricultural land, including nutrient flows in meadows and pastures. Further information is available from https://doi.org/10.5061/dryad.hx3ffbgkh (Ludemann et al., 2023b) as well as the FAOSTAT database (https://www.fao.org/faostat/en/#data/ESB; FAO, 2022a) and is updated annually.

     
    more » « less
  4. Abstract

    China increasingly relies on agricultural imports, driven by its rising population and income, as well as dietary shifts. International trade offers an opportunity to relieve pressures on resource depletion and pollution, such as nitrogen (N) pollution, while it poses multiple socioeconomic challenges, such as food availability. To quantify such trade-offs considering the roles of different crop types, we developed a unique crop-specific N budget database and assessed the impacts of the crop trade on multiple sustainability concerns including N pollution caused by crop production, crop land area, independence of food supply, and trade expenditures. We quantified the ‘virtual’ N inputs and harvested areas, which are the amount of N inputs and land resources used in exporting countries for China’s crop import. In addition, we proposed the concepts of ‘alternative’ N inputs and harvested area to quantify the resources needed if imported crops were produced in China. By comparing results from ‘alternative’ and ‘virtual’ concepts, we assessed the role of trade in Chinese crops over the past 30 years (i.e. 1986–2015) in alleviating N pollution and saving cropland in China and the world. Crop imports accounted for 31% of Chinese crop N consumption in 2015, and these crop imports eased the need for an additional cropland area of 62 million ha. It also avoided an N surplus by 56 and 36 Tg (Tg = 109kg) for China and the world respectively but led to $621 billion crop trade expenditures over the 30 year period. The N pollution damage avoided by crop imports in economic terms was priced at $22 ± 16 billion in 2015, which is lower than the crop trade expenditures but may be surpassed in the future with the development of the Chinese economy. Optimizing a crop trade portfolio can shift domestic production from N-intensive crop production (e.g. maize, fruits, and vegetables) to N-efficient crop production (e.g. soybeans), and consequently mitigate an N surplus by up to 12%. Improving N use efficiency for individual crops can further increase the mitigation potential of N surplus to 30%–50%, but requires technology advancement and policy incentives.

     
    more » « less
  5. Abstract Global use of reactive nitrogen (N) has increased over the past century to meet growing food and biofuel demand, while contributing to substantial environmental impacts. Addressing continued N management challenges requires anticipating pathways of future N use. Several studies in the scientific literature have projected future N inputs for crop production under a business-as-usual scenario. However, it remains unclear how using yield response functions to characterize a given level of technology and management practices (TMP) will alter the projections when using a consistent dataset. In this study, to project N inputs to 2050, we developed and tested three approaches, namely ‘Same nitrogen use efficiency (NUE)’, ‘Same TMP’, and ‘Improving TMP’. We found the approach that considers diminishing returns in yield response functions (‘Same TMP’) resulted in 268 Tg N yr −1 of N inputs, which was 61 and 48 Tg N yr −1 higher than when keeping NUE at the current level with and without considering changes in crop mix, respectively. If TMP continue to evolve at the pace of past five decades, projected N inputs reduce to 204 Tg N yr −1 , a value that is still 59 Tg N yr −1 higher than the inputs in the baseline year 2006. Overall, our results suggest that assuming a constant NUE may be too optimistic in projecting N inputs, and the full range of projection assumptions need to be carefully explored when investigating future N budgets. 
    more » « less