skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plant chemical traits define functional and phylogenetic axes of plant biodiversity
Abstract To determine which types of plant traits might better explain ecosystem functioning and plant evolutionary histories, we compiled 42 traits for each of 15 perennial species in a biodiversity experiment. We used every possible combination of three traits to cluster species. Across these 11,480 combinations, clusters generated using tissue %Ca, %N and %K best mapped onto phylogeny. Moreover, for the 15 best combinations of three traits, 82% of traits were chemical, 16% morphological and 2% metabolic. The diversity‐dependence of ecosystem productivity was better explained by the %Ca, %N and %K clusters: compared to adding a new species at random, adding a species from an absent cluster/clade better‐explained gains in productivity. Species number impacted productivity only when all clusters were present. Our results suggest that tissue elemental chemistry might be more phylogenetically conserved and more strongly related to ecosystem functioning than commonly measured morphological and physiological traits, a possibility that merits exploration.  more » « less
Award ID(s):
1831944
PAR ID:
10435182
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
26
Issue:
8
ISSN:
1461-023X
Format(s):
Medium: X Size: p. 1394-1406
Size(s):
p. 1394-1406
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families. 
    more » « less
  2. The Arctic is warming twice as fast as the rest of the globe. Graminoid, deciduous shrub, and evergreen shrub cover has increased in some regions, but not others. To better understand why plant responses vary across regions, we compared change in plant cover over time with nine functional traits of 12 dominant species in three regions of northern Alaska (Utqiaġvik, Atqasuk, and Toolik Lake). Cover was measured three times from 2008 to 2018. Repeated-measures analysis of variance (ANOVA) found that one species — Carex aquatilis — showed significant change in cover over time, increasing by 12.7% at Atqasuk. Canonical correspondence analysis suggested a relationship between shifts in species cover and traits, but Pearson and Spearman rank correlations did not find a significant trend for any trait when analyzed individually. Investigation of community-weighted means (CWMs) for each trait revealed no significant changes over time for any trait in any region. By comparison, estimated ecosystem values for several traits important to ecosystem functioning showed consistent increases over time in two regions (Utqiaġvik and Atqasuk). Our results indicate that vascular plant community composition and function have remained consistent over time; however, documented increases in total plant cover have important implications for ecosystem functioning. 
    more » « less
  3. Abstract Although diversity‐dependent plant–soil feedbacks (PSFs) may contribute significantly to plant diversity effects on ecosystem functioning, the influences of underlying abiotic and biotic mechanistic pathways have been little explored to date. Here, we assessed such pathways with a PSF experiment using soil conditioned for ≥12 yr from two grassland biodiversity experiments. Model plant communities differing in plant species and functional group richness (current plant diversity treatment) were grown in soils conditioned by plant communities with either low‐ or high‐diversity (soil history treatment). Our results indicate that plant diversity can modify plant productivity through both diversity‐mediated plant–plant and plant–soil interactions, with the main driver (current plant diversity or soil history) differing with experimental context. Structural equation modeling suggests that the underlying mechanisms of PSFs were explained to a significant extent by both abiotic and biotic pathways (specifically, soil nitrogen availability and soil nematode richness). Thus, effects of plant diversity loss on plant productivity may persist or even increase over time because of biotic and abiotic soil legacy effects. 
    more » « less
  4. Abstract A central goal at the interface of ecology and conservation is understanding how the relationship between biodiversity and ecosystem function (B–EF) will shift with changing climate. Despite recent theoretical advances, studies which examine temporal variation in the functional traits and mechanisms (mass ratio effects and niche complementarity effects) that underpin the B–EF relationship are lacking.Here, we use 13 years of data on plant species composition, plant traits, local‐scale abiotic variables, above‐ground net primary productivity (ANPP), and climate from the alpine tundra of Colorado (USA) to investigate temporal dynamics in the B–EF relationship. To assess how changing climatic conditions may alter the B–EF relationship, we built structural equation models (SEMs) for 11 traits across 13 years and evaluated the power of different trait SEMs to predict ANPP, as well as the relative contributions of mass ratio effects (community‐weighted mean trait values; CWM), niche complementarity effects (functional dispersion; FDis) and local abiotic variables. Additionally, we coupled linear mixed effects models with Multimodel inference methods to assess how inclusion of trait–climate interactions might improve our ability to predict ANPP through time.In every year, at least one SEM exhibited good fit, explaining between 19.6% and 57.2% of the variation in ANPP. However, the identity of the trait which best explained ANPP changed depending on winter precipitation, with leaf area, plant height and foliar nitrogen isotope content (δ15N) SEMs performing best in high, middle and low precipitation years, respectively. Regardless of trait identity, CWMs exerted a stronger influence on ANPP than FDis and total biotic effects were always greater than total abiotic effects. Multimodel inference reinforced the results of SEM analysis, with the inclusion of climate–trait interactions marginally improving our ability to predict ANPP through time.Synthesis. Our results suggest that temporal variation in climatic conditions influences which traits, mechanisms and abiotic variables were most responsible for driving the B–EF relationship. Importantly, our findings suggest that future research should consider temporal variability in the B–EF relationship, particularly how the predictive power of individual functional traits and abiotic variables may fluctuate as conditions shift due to climate change. 
    more » « less
  5. Abstract Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles. 
    more » « less