skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cu-Based Bimetallic Catalysts for Electrocatalytic Oxidative Dehydrogenation of Furfural with Practical Rates
Electrocatalytic oxidative dehydrogenation (EOD) of aldehydes enables ultra-low voltage, bipolar H2 production with co-generation of carboxylic acid. Herein, we reported a simple galvanic replacement method to prepare CuM (M = Pt, Pd, Au, and Ag) bimetallic catalysts to improve the EOD of furfural to reach industrially relevant current densities. The redox potential difference between Cu/Cu2+ and a noble metal M/My+ can incorporate the noble metal on the Cu surface and enlarge its surface area. Particularly, dispersing Pt in Cu (CuPt) achieved a record-high current density of 498 mA cm–2 for bipolar H2 production at a low cell voltage of 0.6 V and a Faradaic efficiency of >80% to H2. Future research is needed to deeply understand the synergistic effects of Cu–M toward EOD of furfural, and improve the Cu–M catalyst stability, thus offering great opportunities for future distributed manufacturing of green hydrogen and carbon chemicals with practical rates and low-carbon footprints.  more » « less
Award ID(s):
1947435
PAR ID:
10435224
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
ISSN:
1944-8244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Water electrolysis using renewable energy inputs is being actively pursued as a green route for hydrogen production. However, it is limited by the high energy consumption due to the sluggish anodic oxygen evolution reaction (OER) and safety issues associated with H2 and O2 mixing. Here, we replaced OER with an electrocatalytic oxidative dehydrogenation (EOD) of aldehydes for bipolar H2 production and achieved industrial-level current densities at cell voltages much lower than during water electrolysis. Experimental and computational studies suggest a reasonable barrier for C-H dissociation on Cu surfaces, mainly through a diol intermediate, with a potential-dependent competition with the solution-phase Cannizzaro reaction. The kinetics of EOD reaction was further enhanced by a porous CuAg catalyst prepared from a galvanic replacement method. Through Ag incorporation and its modification of the Cu surface, the geometric current density and electrocatalyst durability were significantly improved. Finally, we engineered a bipolar H2 production system in membrane-electrode assembly-based flow cells to facilitate mass transport, achieving a maximum current density of 248 and 390 mA cm−2 at cell voltages of 0.4 V and 0.6 V, respectively. The faradaic efficiency of H2 from both cathode and anode reactions both attained ~100%. Taking advantage of the bipolar H2 production without the issues associated with H2/O2 mixing, an inexpensive, easy-to-manufacture dialysis porous membrane was demonstrated to substitute the costly anion exchange membrane, achieving an energy-efficient and cost-effective process in a simple reactor for H2 production. The estimated H2 price of $2.51/kg from an initial technoeconomic assessment is competitive with US DoE’s “Green H2” targets. 
    more » « less
  2. Abstract Aldehyde‐assisted water electrolysis offers an attractive pathway for energy‐saving bipolar hydrogen production with combined faradaic efficiency (FE) of 200% while converting formaldehyde into value‐added formate. Herein we report the design and synthesis of noble metal‐free Cu6Sn5alloy as a highly effective electrocatalyst for formaldehyde electro‐oxidative dehydrogenation, demonstrating a geometric current density of 915 ± 46 mA cm−2at 0.4 V versus reversible hydrogen electrode, outperforming many noble metal electrocatalysts reported previously. The formaldehyde‐assisted water electrolyzer delivers 100 mA cm−2at a low cell voltage of 0.124 V, and a current density of 486 ± 20 mA cm−2at a cell voltage of 0.6 V without any iR compensation and exhibits nearly 200% faradaic efficiency for bipolar hydrogen production at 100 mA cm−2in 88 h long‐term operation. Density functional theory calculations further confirm the notably lowered barriers for dehydrogenation and Tafel steps on the Cu₆Sn₅ surface compared to Cu, underscoring its potential as a highly active catalyst. 
    more » « less
  3. Biomass is abundant, inexpensive and renewable, therefore, it is highly expected to play a significant role in our future energy and chemical landscapes. The US DOE has identified furanic compounds (furfural and 5-(hydroxymethyl)furfural (HMF)) as the top platform building-block chemicals that can be readily derived from biomass sources [1]. Electrocatalytic conversion of these furanic compounds is an emerging route for the sustainable production of valuable chemicals [2, 3]. In my presentation, I will first present our recent mechanistic study of electrocatlytic hydrogenation (ECH) of furfural through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies [4]. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important bio-based polymer precursors and fuels We further studied the mechanisms on the Pb electrode, based on the potential regulated ECH and ER products. Isotopic incorporation studies and electrokinetics have confirmed ECH process to alcohol and alkyl product followed different pathways: alcohol was generated from Langmuir Hinshelwood step through surface-bound furfural and hydrogen, which is sensitive to surface structures. In contrast, alkyl product was formed through an Eley–Rideal step via surface-bound furfural and the inner-sphere protons. By modifying the electrode/electrolyte interface, we have elucidated H2O and H3O+ matters in forming alcohol and alkyl products, respectively. Dynamic oscillation studies and electron paramagnetic resonance (EPR) finally confirmed that the alcohol and dimer products shared the same intermediate. The dimer was formed through the intermediate desorption from the surface to form radicals and the self-coupling of two radicals at the bulk electrolyte. Next, I will present electrocatalytic conversion of HMF to two biobased monomers in an H-type electrochemical cell [5]. HMF reduction (hydrogenation) to 2,5-bis(hydroxymethyl)furan (BHMF) was achieved under mild electrolyte conditions and ambient temperature using a Ag/C cathode. Meanwhile, HMF oxidation to 2,5-furandicarboxylic acid (FDCA) with ~100% efficiency was facilitated under the same conditions by a homogeneous nitroxyl radical redox mediator. We recently developed a three-electrode flow cell with an oxide-derived Ag (OD-Ag) cathode and catbon felt anode for paring elecatalytic oxidation and reduction of HMF [6]. The flow cell has a remarkably low cell voltage: from ~7.5 V to ~2.0 V by transferring the electrolysis from the H-type cell to the flow cell. This represents a more than fourfold increase in the energy efficiency at the 10 mA operation. A combined faradaic efficiency of 163% was obtained to BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ~0.85 V at 10 mA operation. These paired processes have shown potential for integrating renewable electricity and carbon for distributed chemical manufacturing in the future. 
    more » « less
  4. A paired alkaline electrolyzer with non-noble metal catalysts was developed, demonstrating higher performances of furfural oxidation on NiFe/Ni foam at the anode and hydrogen evolution on Co/MXene at the cathode under practical current densities. 
    more » « less
  5. The adsorption of crotonaldehyde on Cu-Pt alloy surfaces was characterized by density functional theory (DFT). Two surfaces were considered: Cu2Pt/Cu(111) and Cu3Pt/Cu(111). It was determined that the presence of Pt on the surface, even when isolated as single atoms fully surrounded by Cu, provides additional stability for the adsorbates, increasing the magnitude of the adsorption energy by as much as 40 kJ/mol. The preferred bonding on both surfaces is via multiple coordination, with the most stable configuration being a cis arrangement with di-σ bonding of the C=O bond across a Cu–Cu bridge and an additional π bonding to a Pt atom. The fact that Pt significantly affects the adsorption of unsaturated aldehydes such as crotonaldehyde explains why the kinetics of their hydrogenation using single-atom alloy (SAA) catalysts vary with alloy composition, as we previously reported, and brings into question the simple model in which the role of Pt is only to promote the dissociation of H2. 
    more » « less