Chemoenzymatic Synthesis of Homogeneous Heparan Sulfate and Chondroitin Sulfate Chimeras
- Award ID(s):
- 1933525
- PAR ID:
- 10435277
- Date Published:
- Journal Name:
- ACS Chemical Biology
- Volume:
- 17
- Issue:
- 5
- ISSN:
- 1554-8929
- Page Range / eLocation ID:
- 1207 to 1214
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Despite the recent progress on the solution-phase enzymatic synthesis of heparan sulfate (HS) and chondroitin sulfate (CS), solid-phase enzymatic synthesis has not been fully investigated. Here, we describe the solid-phase enzymatic synthesis of HS and CS backbone oligosaccharides using specialized linkers. We demonstrate the use of immobilized HS linker to synthesize CS, and the use of immobilized CS linker to synthesize HS. The linkers were then digested with chondroitin ABCase and heparin lyases, respectively, to obtain the products. Our findings uncover a potential approach for accelerating the synthesis of structurally homogeneous HS and CS oligosaccharides.more » « less
-
Abstract Sulfate is a potential pollutant and important nutrient linked with the nitrogen, carbon, and phosphorus cycles. The importance of different anthropogenic sulfate sources in suburban streams (septic systems, fertilizer, road salt, and infrastructure) is uncertain, and the temporal dynamics of stream export sparsely documented. We study sources and export dynamics of sulfate in suburban and forested headwater catchments. Stream baseflow discharge and sulfate concentrations were strongly positively correlated in both watersheds with the highest values in spring. Suburban concentrations and fluxes (2.48–7.5 mg/L or 25.8–78.1 μM, 16.6 kg/ha/yr) were consistently higher than forested (0.56–2.78 mg/L or 5.8–28.9 μM, 5 kg/ha/yr). Following precipitation, sulfate concentrations in both forested and suburban streams increased to concentrations above pre‐storm values and remained high after peak discharge. These dynamics suggest that both catchments have a large pool of sulfate that can be mobilized under wet conditions. Ridge‐top forest soil samples contained 210 kg/ha stored, extractable sulfate. Current atmospheric sulfate deposition rates (5–7 kg/ha/yr) are approximately in balance with sulfate export in the forested stream. In the suburban watershed, we estimated septic fields contribute up to 11 kg/ha/yr (about half from surfactants) and lawn care up to 4.3 kg/ha/yr and are the most likely sources of elevated stream sulfate. Sulfate sulfur (4.9–5.8‰ forested; 6.1–7.0‰ suburban) and oxygen isotope values (0.7–2.0‰ forested; −0.1–4.1‰ suburban) are consistent with this interpretation, but do not provide strong corroboration due to large variation and overlap in estimated source values.more » « less
-
In this study, a sulfonation approach using chlorosulfonic acid (CSA) to prepare cellulose sulfate nanofibers (CSNFs) from raw jute fibers is demonstrated. Both elemental sulfur content and zeta potential in the CSNFs are found to increase with increasing CSA content used. However, the corresponding crystallinity in the CSNFs decreases with the increasing amount of CSA used due to degradation of cellulose chains under harsh acidic conditions. The ammonium adsorption results from the CSNFs with varying degrees of sulfonation were analyzed using the Langmuir isotherm model, and the analysis showed a very high maximum ammonium adsorption capacity (41.1 mg/g) under neutral pH, comparable to the best value from a synthetic hydrogel in the literature. The high ammonium adsorption capacity of the CSNFs was found to be maintained in a broad acidic range (pH = 2.5 to 6.5).more » « less
An official website of the United States government

