skip to main content


This content will become publicly available on March 1, 2025

Title: Cellulose Sulfate Nanofibers for Enhanced Ammonium Removal

In this study, a sulfonation approach using chlorosulfonic acid (CSA) to prepare cellulose sulfate nanofibers (CSNFs) from raw jute fibers is demonstrated. Both elemental sulfur content and zeta potential in the CSNFs are found to increase with increasing CSA content used. However, the corresponding crystallinity in the CSNFs decreases with the increasing amount of CSA used due to degradation of cellulose chains under harsh acidic conditions. The ammonium adsorption results from the CSNFs with varying degrees of sulfonation were analyzed using the Langmuir isotherm model, and the analysis showed a very high maximum ammonium adsorption capacity (41.1 mg/g) under neutral pH, comparable to the best value from a synthetic hydrogel in the literature. The high ammonium adsorption capacity of the CSNFs was found to be maintained in a broad acidic range (pH = 2.5 to 6.5).

 
more » « less
Award ID(s):
2140820 2216585
NSF-PAR ID:
10495214
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Nanomaterials
Volume:
14
Issue:
6
ISSN:
2079-4991
Page Range / eLocation ID:
507
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anionic carboxylated cellulose nanofibers (CNF) are effective media to remove cationic contaminants from water. In this study, sustainable cationic CNF-based adsorbents capable of removing anionic contaminants were demonstrated using a simple approach. Specifically, the zero-waste nitro-oxidization process was used to produce carboxylated CNF (NOCNF), which was subsequently converted into a cationic scaffold by crosslinking with aluminum ions. The system, termed Al-CNF, is found to be effective for the removal of fluoride ions from water. Using the Langmuir isotherm model, the fluoride adsorption study indicates that Al-CNF has a maximum adsorption capacity of 43.3 mg/g, which is significantly higher than that of alumina-based adsorbents such as activated alumina (16.3 mg/g). The selectivity of fluoride adsorption in the presence of other anionic species (nitrate or sulfate) by Al-CNF at different pH values was also evaluated. The results indicate that Al-CNF can maintain a relatively high selectivity towards the adsorption of fluoride. Finally, the sequential applicability of using spent Al-CNF after the fluoride adsorption to further remove cationic contaminant such as Basic Red 2 dye was demonstrated. The low cost and relatively high adsorption capacity of Al-CNF make it suitable for practical applications in fluoride removal from water.

     
    more » « less
  2. Abstract

    The recovery and reuse of phosphorus (P) from wastewater treatment process is a critical and viable target for sustainable P utilization. This study explores a novel approach of integrating ultrafine mineral particles into hydrogel matrixes for enhancing the capacity of phosphate adsorption. Dolomite‐alginate (DA) hydrogel beads were prepared by integrating ball‐milled, ultrafine dolomite powders into calcium cross‐linked alginate hydrogel matrix. The adsorption isotherms followed a Langmuir–Freundlich adsorption model with higher specific adsorption capacity than those reported in literature. The kinetics of phosphate adsorption suggest that the adsorption is diffusion controlled. Investigation of adsorption capacity at differentpHshowed a maximum adsorption capacity in thepHrange of 7–10. Lastly, we demonstrated that theDAbeads are capable of slowly releasing most of the adsorbed phosphate, which is an important criterion for them to be an effective phosphorous fertilizer. This study, usingDAcomposite hydrogel as an example, demonstrates a promising strategy of immobilizing ultrafine mineral adsorbents into biocompatible hydrogel matrix for effective recovery of phosphorous resource from wastewater.

    Practitioner points

    Integration of dolomite and alginate hydrogel beads is demonstrated using ball milling.

    Ball milling process increases the specific adsorption capacity of dolomite on phosphorus.

    Adsorption isotherms, kinetics, andpHeffects of the dolomite–alginate beads are investigated.

    The dolomite–alginate beads can be used as slow‐release phosphorus fertilizer.

     
    more » « less
  3. A cellulose graft copolymer (cellulose nanoresin) was synthesized by the all-aqueous functionalization of cellouronic acid with poly (vinyl benzyl trimethyl ammonium chloride) (poly(vbTMAC)). Cellulose was oxidized using the highly reported 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated selective C-6 oxidation reaction. Fischer–Speier esterification of cellouronic acid was used to graft poly(vbTMAC) to the cellulosic backbone in a facile click-like mechanism. Synthesis of cellulose nanoresin was confirmed using dynamic light scattering and zeta potential measurements. Conductometric titration was used to determine the carboxylate content of cellouronic acid and the percent functionalization of the cellulose nanoresin, which was 1.69 ± 0.03 mmol/g and 61.2 ± 4%, respectively. Using a disodium fluorescein (NaFL) surrogate adsorbate, the maximum adsorption capacity of CNR was measured to be 26.8 ± 1.3 mg NaFL per gram of CNR with a Langmuir equilibrium binding constant of Ks = 10.5 ± 2 ppm−1. When examined as a thin film membrane, a breakthrough study of CNR showed that equilibrium loading was achieved in less than 30 s, and that > 90% of loading occurred in under 5 s. This data suggests that these films can be used as contact resins for anion-exchange water purification. We show in this work that these films maintain > 99% of loading performance over 40 trials of regeneration and reuse, meaning that these films are green and regenerable. Initial testing shows that CNR is effective at the removal of perfluorooctane sulfonate (PFOS) from water to below our limit of detection of 100 ppt. 
    more » « less
  4. A novel composite hydrogel bead composed of sodium alginate (SA) and aldehyde cellulose nanocrystal (DCNC) was developed for antibiotic remediation through a one-step cross-linking process in a calcium chloride bath. Structural and physical properties of the hydrogel bead, with varying composition ratios, were analyzed using techniques such as BET analysis, SEM imaging, tensile testing, and rheology measurement. The optimal composition ratio was found to be 40% (SA) and 60% (DCNC) by weight. The performance of the SA–DCNC hydrogel bead for antibiotic remediation was evaluated using doxycycline (DOXY) and three other tetracyclines in both single- and multidrug systems, yielding a maximum adsorption capacity of 421.5 mg g−1 at pH 7 and 649.9 mg g−1 at pH 11 for DOXY. The adsorption mechanisms were investigated through adsorption studies focusing on the effects of contact time, pH, concentration, and competitive contaminants, along with X-ray photoelectron spectroscopy analysis of samples. The adsorption of DOXY was confirmed to be the synergetic effects of chemical reaction, electrostatic interaction, hydrogen bonding, and pore diffusion/surface deposition. The SA–DCNC composite hydrogel demonstrated high reusability, with more than 80% of its adsorption efficiency remaining after five cycles of the adsorption–desorption test. The SA–DCNC composite hydrogel bead could be a promising biomaterial for future antibiotic remediation applications in both pilot and industrial scales because of its high adsorption efficiency and ease of recycling. 
    more » « less
  5. Adsorption processes at mineral–water interfaces control the fate and transport of arsenic in soils and aquatic systems. Mechanistic and thermodynamic models to describe this phenomenon only consider inner-sphere complexes but recent observation of the simultaneous adsorption of inner- and outer-sphere arsenate on single crystal surfaces complicates this picture. In this study, we investigate the ionic strength-dependence of the macroscopic adsorption behavior and molecular-scale surface speciation of arsenate bound to gibbsite and bayerite. Arsenate adsorption decreases with increasing ionic strength on both minerals, with a larger effect at pH 4 than pH 7. The observed pH-dependence corresponds with a substantial decrease in surface charge at pH 7, as indicated by zeta-potential measurements. Extended X-ray absorption fine structure (EXAFS) spectroscopy finds that the number of second shell Al neighbors around arsenate is lower than that required for arsenate to occur solely as an inner-sphere surface complex. Together, these observations demonstrate that arsenate displays macroscopic and molecular-scale behavior consistent with the co-occurrence of inner- and outer-sphere surface complexes. This demonstrated that outer-sphere species can be responsible for strong adsorption of ions and suggests that environments experiencing an increase in salt content may induce arsenic release to water, especially under weakly acidic conditions. 
    more » « less