skip to main content


Title: Mass Loss in Evolved Stars
Intense mass loss through cool, low-velocity winds is a defining characteristic of low-to-intermediate mass stars during the asymptotic giant branch (AGB) evolutionary stage. Such winds return up ~80% of the initial stellar mass to the interstellar medium and play a major role in enriching it with dust and heavy elements. A challenge to understanding the physics underlying AGB mass loss is its dependence on an interplay between complex and highly dynamic processes, including pulsations, convective flows, shocks, magnetic fields, and opacity changes resulting from dust and molecule formation. I highlight some examples of recent advances in our understanding of late-stage stellar mass loss that are emerging from radio and (sub)millimeter observations, with a particular focus on those that resolve the surfaces and extended atmospheres of evolved stars in space, time, and frequency.  more » « less
Award ID(s):
2107681
NSF-PAR ID:
10435460
Author(s) / Creator(s):
Editor(s):
Hirota, T.; Imai, H.; Menten, K.; Pihlstrom, Y.
Date Published:
Journal Name:
Cosmic Masers: Proper Motion toward the Next-Generation Large Projects
Volume:
380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Interstellar small bodies are unique probes into the histories of exoplanetary systems. One hypothesized class of interlopers are “Jurads,” exocomets released into the Milky Way during the post-main-sequence as the thermally pulsing asymptotic giant branch (AGB) host stars lose mass. In this study, we assess the prospects for the Legacy Survey of Space and Time (LSST) to detect a Jurad and examine whether such an interloper would be observationally distinguishable from exocomets ejected during the (pre-)main-sequence. Using analytic and numerical methods, we estimate the fraction of exo–Oort Cloud objects that are released from 1–8Mstars during post-main-sequence evolution. We quantify the extent to which small bodies are altered by the increased luminosity and stellar outflows during the AGB, finding that some Jurads may lack hypervolatiles and that stellar winds could deposit dust that covers the entire exocomet surface. Next, we construct models of the interstellar small body reservoir for various size–frequency distributions and examine the LSST’s ability to detect members of those hypothesized populations. Combining these analyses, we highlight the joint constraints that the LSST will place on power-law size–frequency distribution slopes, characteristic sizes, and the total mass sequestered in the minor planets of exo–Oort Clouds. Even with the LSST’s increased search volume compared to contemporary surveys, we find that detecting a Jurad is unlikely but not infeasible given the current understanding of (exo)planet formation.

     
    more » « less
  2. Abstract

    Dust grains that formed around ancient stars and in stellar explosions seeded the early solar protoplanetary disk. While most of such presolar grains were destroyed during solar system formation, a fraction of such grains were preserved in primitive materials such as meteorites. These grains can provide constraints on stellar origins and secondary processing such as aqueous alteration and thermal metamorphism on their parent asteroids. Here, we report on the nature of aqueous alteration in the Miller Range (MIL) 07687 chondrite through the analysis of four presolar silicates and their surrounding material. The grains occur in the Fe‐rich and Fe‐poor lithologies, reflecting relatively altered and unaltered material, respectively. The O‐isotopic compositions of two grains, one each from the Fe‐rich and Fe‐poor matrix, are consistent with formation in the circumstellar envelopes of low‐mass Asymptotic Giant Branch (AGB)/Red Giant Branch (RGB) stars. The other two grains, also one each from the Fe‐rich and Fe‐poor matrix, have O‐isotopic compositions consistent with formation in the ejecta of type‐II supernovae (SNe). The grains derived from AGB/RGB stars include two polycrystalline pyroxene grains that contain Fe‐rich rims. The SNe grains include a polycrystalline Ca‐bearing pyroxene and a polycrystalline assemblage consistent with a mixture of olivine and pyroxene. Ferrihydrite is observed in all focused ion beam sections, consistent with parent‐body aqueous alteration of the fine‐grained matrix under oxidizing conditions. The Fe‐rich rims around presolar silicates in this study are consistent with Fe‐diffusion into the grains resulting from early‐stage hydrothermal alteration, but such alteration was not extensive enough to lead to isotopic equilibration with the surrounding matrix.

     
    more » « less
  3. Context. The origin of the observed population of Wolf-Rayet (WR) stars in low-metallicity galaxies, such as the Small Magellanic Cloud (SMC), is not yet understood. Standard, single-star evolutionary models predict that WR stars should stem from very massive O-type star progenitors, but these are very rare. On the other hand, binary evolutionary models predict that WR stars could originate from primary stars in close binaries. Aims. We conduct an analysis of the massive O star, AzV 14, to spectroscopically determine its fundamental and stellar wind parameters, which are then used to investigate evolutionary paths from the O-type to the WR stage with stellar evolutionary models. Methods. Multi-epoch UV and optical spectra of AzV 14 are analyzed using the non-local thermodynamic equilibrium (LTE) stellar atmosphere code PoWR. An optical TESS light curve was extracted and analyzed using the PHOEBE code. The obtained parameters are put into an evolutionary context, using the MESA code. Results. AzV 14 is a close binary system with a period of P  = 3.7058 ± 0.0013 d. The binary consists of two similar main sequence stars with masses of M 1, 2  ≈ 32  M ⊙ . Both stars have weak stellar winds with mass-loss rates of log Ṁ /( M ⊙ yr −1 ) = −7.7 ± 0.2. Binary evolutionary models can explain the empirically derived stellar and orbital parameters, including the position of the AzV 14 components on the Hertzsprung-Russell diagram, revealing its current age of 3.3 Myr. The model predicts that the primary will evolve into a WR star with T eff  ≈ 100 kK, while the secondary, which will accrete significant amounts of mass during the first mass transfer phase, will become a cooler WR star with T eff  ≈ 50 kK. Furthermore, WR stars that descend from binary components that have accreted significant amount of mass are predicted to have increased oxygen abundances compared to other WR stars. This model prediction is supported by a spectroscopic analysis of a WR star in the SMC. Conclusions. Inspired by the binary evolutionary models, we hypothesize that the populations of WR stars in low-metallicity galaxies may have bimodal temperature distributions. Hotter WR stars might originate from primary stars, while cooler WR stars are the evolutionary descendants of the secondary stars if they accreted a significant amount of mass. These results may have wide-ranging implications for our understanding of massive star feedback and binary evolution channels at low metallicity. 
    more » « less
  4. Abstract

    Asymptotic giant branch (AGB) stars are one of the main sources of dust in the Universe. They form and supply dust triggered by stellar pulsations, but the details of the mechanism are still unknown. Among all AGB stars, dusty AGB stars are the most important in terms of dust supply because they contain the star with a high mass-loss rate. To investigate the relationship between the pulsation and the dust supply for such dusty AGB stars, long-term mid-infrared monitoring is necessary. In this study, we combine data from a infrared astronomical satellites AKARI and WISE to generate mid-infrared long-term observation data. This collected data enables us to investigate the variability of dusty AGB stars with a variability period of more than several hundred days (>250 d). Furthermore, we determine the mid-infrared variability amplitudes of 169 O-rich AGB stars and 28 OH/IR stars in our Galaxy, as well as data at other wavelengths. This study is the largest study on mid-infrared variability. Additionally, we discover a positive correlation between the variability amplitude A18μm in the 18μm band and the $\mathit {W3}-\mathit {W4}$ infrared color which is the measure of the dust supply. Also, we find that this relationship is independent of the variability period and mode. Finally, we calculate the radiative transfer of circumstellar dust from AGB stars. The result of our calculations showed that $A_{18\mu \rm {m}}$ is strongly affected by the luminosity change ratio of the central star. These experimental results imply that the luminosity change ratio has a strong influence on the dust supply of AGB star.

     
    more » « less
  5. Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) could be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe). We infer that the same physics shapes both AGB winds and PNe; additionally, the morphology and AGB mass-loss rate are correlated. These characteristics can be explained by binary interaction. We propose an evolutionary scenario for AGB morphologies that is consistent with observed phenomena in AGB stars and PNe.

     
    more » « less