skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraining the assembly time of the stellar haloes of nearby Milky Way-mass galaxies through AGB populations
ABSTRACT The star formation histories (SFHs) of galactic stellar haloes offer crucial insights into the merger history of the galaxy and the effects of those mergers on their hosts. Such measurements have revealed that while the Milky Way’s most important merger was 8–10 Gyr ago, M31’s largest merger was more recent, within the last few Gyr. Unfortunately, the required halo SFH measurements are extremely observationally expensive outside of the Local Group. Here, we use asymptotic giant branch (AGB) stars brighter than the tip of the red giant branch (RGB) to constrain stellar halo SFHs. Both stellar population models and archival data sets show that the AGB/RGB ratio constrains the time before which 90 per cent of the stars formed, t90. We find AGB stars in the haloes of three highly inclined roughly Milky Way-mass galaxies with resolved star measurements from the Hubble Space Telescope; this population is most prominent in the stellar haloes of NGC 253 and NGC 891, suggesting that their stellar haloes contain stars born at relatively late times, with inferred t90 ∼ 6 ± 1.5 Gyr. This ratio also varies from region to region, tending towards higher values along the major axis and in tidal streams or shells. By combining our measurements with previous constraints, we find a tentative anticorrelation between halo age and stellar halo mass, a trend that exists in models of galaxy formation but has never been elucidated before, i.e. the largest stellar haloes of Milky Way-mass galaxies were assembled more recently.  more » « less
Award ID(s):
2007065
PAR ID:
10459746
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
525
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4497-4514
Size(s):
p. 4497-4514
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It is not yet settled how the combination of secular processes and merging gives rise to the bulges and pseudobulges of galaxies. The nearby (D∼ 4.2 Mpc) disk galaxy M94 (NGC 4736) has the largest pseudobulge in the local universe, and offers a unique opportunity for investigating the role of merging in the formation of its pseudobulge. We present a first ever look at M94's stellar halo, which we expect to contain a fossil record of M94's past mergers. Using Subaru's Hyper Suprime-Cam, we resolve and identify red giant branch (RGB) stars in M94's halo, finding two distinct populations. After correcting for completeness through artificial star tests, we can measure the radial profile of each RGB population. The metal-rich RGB stars show an unbroken exponential profile to a radius of 30 kpc that is a clear continuation of M94's outer disk. M94's metal-poor stellar halo is detectable over a wider area and clearly separates from its metal-rich disk. By integrating the halo density profile, we infer a total accreted stellar mass of ∼2.8 × 108M, with a median metallicity of [M/H] = −1.4. This indicates that M94's most-massive past merger was with a galaxy similar to, or less massive than, the Small Magellanic Cloud. Few nearby galaxies have had such a low-mass dominant merger; therefore we suggest that M94's pseudobulge was not significantly impacted by merging. 
    more » « less
  2. The stellar halos of galaxies, primarily formed through the accretion and merger of smaller objects, are an important tool for understanding the hierarchical mass assembly of galaxies. However, the inner regions of stellar halos in disk galaxies are predicted to have an in situ component that is expected to be prominent along the major axis. Kinematic information is crucial to disentangle the contribution of the in situ component from the accreted stellar halos. The low surface brightness of stellar halos makes it inaccessible with traditional integrated light spectroscopy. In this work, we used a novel technique to study the kinematics of the stellar halo of the edge-on galaxy NGC 4945. We couple new deep Multi Unit Spectroscopic Explorer spectroscopic observations with existingHubbleSpace Telescope imaging data to spectroscopically measure the line-of-sight (LOS) heliocentric velocity and velocity dispersion in two fields at a galactocentric distance of 12.2 kpc (outer disk field) and 34.6 kpc (stellar halo field) along the NGC 4945 major axis, by stacking individual spectra of red giant branch and asymptotic giant branch stars. We obtained a LOS velocity and dispersion of 673 ± 11 km s−1and 73 ± 14 km s−1, respectively, for the outer disk field. This is consistent with the mean HI velocity of the disk at that distance. For the halo field, we obtained a LOS velocity and dispersion of 519 ± 12 km s−1and 42 ± 22 km s−1. The halo fields’ velocity measurement is within ∼40 km s−1from the systemic LOS velocity of NGC 4945, which is 563 km s−1, suggesting that its stellar halo at 34.6 kpc along the major axis is counter-rotating and its origins are likely to be the result of accretion. This provides the first-ever kinematic measurement of the stellar halo of a Milky Way-mass galaxy outside the Local Group from its resolved stellar population. Thus, we have established a powerful technique for measuring the velocity field for the stellar halos of nearby galaxies. 
    more » « less
  3. Abstract Mergers of and interactions between galaxies imprint a wide diversity of morphological, dynamical, and chemical characteristics in stellar halos and tidal streams. Measuring these characteristics elucidates aspects of the progenitors of the galaxies we observe today. The M81 group is the perfect galaxy group to understand the past, present, and future of a group of galaxies in the process of merging. Here, we measure the end of star formation (t90) and metallicity ([M/H]) of the stellar halo of M82 and the eastern tidal stream of NGC 3077 to: (1) test the idea that M82 possesses a genuine stellar halo, formed before any interaction with M81; (2) determine if NGC 3077's tidal disruption is related to the star formation history in its tails; and (3) create a timeline of the assembly history of the central trio in the M81 group. We argue that M82 possesses a genuine, metal-poor ([M/H] ∼ −1.62 dex) stellar halo, formed from the merger of a small satellite galaxy roughly 6.6 Gyr ago. We also find that the stars present in NGC 3077's tails formed before tidal disruption with M81, and possess a roughly uniform metallicity as shown in S. Okamoto et al., implying that NGC 3077's progenitor had significant population gradients. Finally, we present a timeline of the central trio’s merger/interaction history. 
    more » « less
  4. Abstract We present the discovery of 2MASS J05241392−0336543 (hereafter J0524−0336), a very metal-poor ([Fe/H] = −2.43 ± 0.16), highlyr-process-enhanced ([Eu/Fe] = +1.34 ± 0.10) Milky Way halo field red giant star, with an ultrahigh Li abundance ofA(Li, 3D, NLTE) = 6.15 ± 0.25 and [Li/Fe] = +7.64 ± 0.25, respectively. This makes J0524−0336 the most lithium-enhanced giant star discovered to date. We present a detailed analysis of the star’s atmospheric stellar parameters and chemical abundance determinations. Additionally, we detect indications of infrared excess, as well as observe variable emission in the wings of the Hαabsorption line across multiple epochs, indicative of a potential enhanced mass-loss event with possible outflows. Our analysis reveals that J0524−0336 lies either between the bump and the tip of the red giant branch (RGB), or on the early asymptotic giant branch (e-AGB). We investigate the possible sources of lithium enrichment in J0524−0336, including both internal and external sources. Based on current models and on the observational evidence we have collected, our study shows that J0524−0336 may be undergoing the so-called lithium flash that is expected to occur in low-mass stars when they reach the RGB bump and/or the e-AGB. 
    more » « less
  5. The vast majority of Milky Way stellar halo stars were likely accreted from a small number (<~3) of relatively large dwarf galaxy accretion events. However, the timing of these events is poorly constrained and predominantly relies on indirect dynamical mixing arguments or imprecise age measurements of stars associated with debris structures. Here, we aim to infer robust stellar ages for stars associated with galactic substructures to more directly constrain the merger history of the Galaxy. By combining kinematic, asteroseismic, and spectroscopic data where available, we infer stellar ages for a sample of 10 red giant stars that were kinematically selected to be within the stellar halo, a subset of which are associated with the Gaia–Enceladus–Sausage halo substructure, and compare their ages to 3 red giant stars in the Galactic disk. Despite systematic differences in both absolute and relative ages determined here, age rankings of stars in this sample are robust. Passing the same observable inputs to multiple stellar age determination packages, we measure a weighted average age for the Gaia–Enceladus–Sausage stars in our sample of 8+/-3 (stat.)+/-1 (sys.) Gyr. We also determine hierarchical ages using isochrones for the populations of Gaia–Enceladus–Sausage, in situ halo and disk stars, finding a Gaia–Enceladus–Sausage population age of 8.0+2.3-3.2 Gyr. Although we cannot distinguish hierarchical population ages of halo or disk structures with our limited data and sample of stars, this framework should allow a distinct characterization of Galactic substructures using larger stellar samples and additional data available in the near future 
    more » « less