skip to main content


This content will become publicly available on June 1, 2024

Title: Broadening Participation and the Mission of Engineering for US All (e4usa) through Design Projects That Engage Students with Disabilities as Stakeholders (Work in Progress)
Students with disabilities (SWDs) and neurodiverse students are underrepresented at all points along the educational pathway in engineering. One potential entry point for engaging SWDs and broadening future participation in engineering is through the role of stakeholder in engineering design challenges, and specifically during high school, which is a crucial part of the pathway to engineering. High school teachers and students engaged in Engineering for US All (e4usa) have completed several engineering design projects involving SWDs as stakeholders. These projects represent a human-centered approach to engineering that emphasizes a comprehensive understanding of stakeholders. This work in progress will present results from surveys completed by e4usa teachers and students who have engaged in disability-centered engineering design challenges, with SWDs serving as the stakeholder to understand their experiences. Additionally, SWDs serving as stakeholders and those that support them (e.g., special education teachers, paraprofessionals, related service providers, families) will be interviewed about their experiences engaging in their project. Potential implications of the research findings include the impact of engaging SWDs in engineering design, especially as it relates to increased knowledge of general education teachers and students about inclusive practices and supports (e.g., evidence-based practices, alternative communication strategies, prompting). Additionally, the outcomes may contribute to efforts to broaden the participation of SWDs in engineering. Doing so, will help support the e4usa mission, which aims to demystify and democratize the learning and practice of engineering by increasing engineering literacy for all and expand opportunities for those traditionally underserved and marginalized in engineering to pursue careers as engineers and expand the STEM workforce pipeline.  more » « less
Award ID(s):
2120746
NSF-PAR ID:
10435487
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2023 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose This paper aims to examine the role of school stakeholders (e.g. advisory board members, school administrators, parents, teachers and school board members) at a 99% black academy in promoting the achievement and broadening participation of high school black students in engineering career pathways. Design/methodology/approach The authors followed a qualitative case study design to explore the experiences of school stakeholders (e.g. students, district and school personnel and community partners) associated with the implementation of the career academy (Stake, 2006; Yin, 1994). Findings The authors found that the school relied heavily on the support of the community in the form of an advisory board – including university faculty and industry leaders – to actively develop culturally responsive strategies (e.g. American College Test preparation, work-based learning opportunities) to ensure the success of black students interested in pursuing career pathways in engineering. Thus, school stakeholders in the academy of engineering served as authentic leaders who inspired academy students by serving as role models and setting examples through what they do as engineering professionals. It was quite evident that the joy and fulfillment that these authentic leaders gained from using their talents directly or indirectly inspired students in the academy to seek out and cultivate the talents they are good at and passionate about as well (Debebe, 2017). Moreover, the career academy provided environmental or sociocultural conditions that promoted the development of learners’ gifts and talents (Plucker and Barab, 2005). Within that context, the goals of career academy school stakeholders were to support students in the discovery of what they are good at doing and to structure their educational experiences to cultivate their gifts into talents. Research limitations/implications It is also important to acknowledge that this study is not generalizable to the one million career academy students across the nation. Yet, the authors believe researchers should continue to examine the career academy advisory board as a source of capital for engaging and preparing diverse learners for success post-high school. Further research is needed to investigate how advisory boards support students’ in school and postsecondary outcomes, particularly for diverse students. Practical implications The authors highlight promising practices for schools to implement in establishing a diverse talent pipeline. Social implications On a theoretical level, the authors found important insights into the possibility of black students benefiting from a culturally responsive advisory board that provided social and cultural capital (e.g. aspirational, navigational and social) resources for their success. Originality/value While prior researchers have studied the positive impact of teachers in career academies as a contributor to social capital for students (Lanford and Maruco, 2019) and what diverse students bring to the classroom as a form of capital Debebe(Yosso, 2005), research has not identified the role of the advisory board (in its efforts to connect the broader community) as a vehicle for equipping ethnically and racially diverse students who come from economically disadvantaged backgrounds with social capital. Within that sense, the authors believe the advisory board at Stanton Academy relied on what the authors term local community capital to provide resources and supports for black students’ successful transition from high school into science, technology, engineering, and mathematics (STEM)-related college and career pathways. 
    more » « less
  2. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  3. Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact. 
    more » « less
  4. null (Ed.)
    To meet the rising demand for computer science (CS) courses, K-12 educators need to be prepared to teach introductory concepts and skills in courses such as Computer Science Principles (CSP), which takes a breadth-first approach to CS and includes topics beyond programming such as data, impacts of computing, and networks. Educators are now also being asked to teach more advanced concepts in courses such as the College Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content or pedagogy designed to engage a broad range of learners and support their success. Unlike CSP, which is attracting more underrepresented students to computing as it was designed, CSA continues to enroll mostly male, white, and Asian students [College Board 2019, Ericson 2020, Sax 2020]. In order to expand CS education opportunities, it is crucial that students have an engaging experience in CSA similar to CSP. Well-designed differentiated professional development (PD) that focuses on content and pedagogy is necessary to meet individual teacher needs, to successfully build teacher skills and confidence to teach CSA, and to improve engagement with students [Darling-Hammond 2017]. It is critical that as more CS opportunities and courses are developed, teachers remain engaged with their own learning in order to build their content knowledge and refine their teaching practice [CSTA 2020]. CSAwesome, developed and piloted in 2019, offers a College Board endorsed AP CSA curriculum and PD focused on supporting the transition of teachers and students from CSP to CSA. This poster presents preliminary findings aimed at exploring the supports and challenges new-to-CSA high school level educators face when transitioning from teaching an introductory, breadth-first course such as CSP to teaching the more challenging, programming-focused CSA course. Five teachers who completed the online CSAwesome summer 2020 PD completed interviews in spring 2021. The project employed an inductive coding scheme to analyze interview transcriptions and qualitative notes from teachers about their experiences learning, teaching, and implementing CSP and CSA curricula. Initial findings suggest that teachers’ experience in the CSAwesome PD may improve their confidence in teaching CSA, ability to effectively use inclusive teaching practices, ability to empathize with their students, problem-solving skills, and motivation to persist when faced with challenges and difficulties. Teachers noted how the CSAwesome PD provided them with a student perspective and increased feelings of empathy. Participants spoke about the implications of the COVID-19 pandemic on their own learning, student learning, and teaching style. Teachers enter the PD with many different backgrounds, CS experience levels, and strengths, however, new-to-CSA teachers require further PD on content and pedagogy to transition between CSP and CSA. Initial results suggest that the CSAwesome PD may have an impact on long-term teacher development as new-to-CSA teachers who participated indicated a positive impact on their teaching practices, ideologies, and pedagogies. 
    more » « less
  5. There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in PBLs, students work on projects over extended periods of time that culminate in realistic products or presentations. In order to be successful, students need to learn how to frame a problem, identify stakeholders and their requirements, design and select concepts, test them, and so on. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required, junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. With the PBL implementations, it is expected that students: 1) engage in a deeper learning process where concepts can be reemphasized, and students can realize applicability; 2) develop and practice teamwork skills; 3) learn and practice how to communicate effectively to peers and to those from other fields; and 4) increase their confidence working on open-ended situations and problems. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. Students' experiences are also presented. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester in order to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that no major differences were observed in terms of the learned fluid mechanics content, however, the data showed interesting preliminary observations regarding teamwork satisfaction. Through reflective assignments (e.g., short answer reflections, focus groups), student perceptions of the PBL implementations are discussed in the paper. Finally, some of the challenges and lessons learned from implementing both projects multiple times, as well as access to some of the PBL course materials and assignments will be provided. 
    more » « less