skip to main content

Title: Understanding the ‘us all’ in Engineering 4 Us All through the Experiences of High School Teachers
As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse more » schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1849430
Publication Date:
NSF-PAR ID:
10294213
Journal Name:
3rd annual CoNECD – The Collaborative Network for Engineering and Computing Diversity Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. The Bureau of Statistics identified an urgent demand for science, technology, engineering, and mathematics (STEM) professionals in the coming years. In order to meet this demand, the number of students graduating with STEM degrees in the United States needs to increase by 34% annually [1]. Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database is a NSF-funded first-of-its-kind initiative designed to address this national need. The E4USA project aims to make engineering more inclusive and accessible to underrepresented minorities, while increasing racial, ethnic, and gender representation in higher education and the workforce. Themore »“for us all” mission of E4USA encompasses both students and educators. The demand for engineering educators has increased, but relying on practicing engineers to switch careers and enter teacher preparation programs has been insufficient [2, 3, 4]. This has led schools to turn to educators with limited training in engineering, which could potentially have a significant national impact on student engineering education [5, 6, 7]. Part of the E4USA pilot year mission has been to welcome educators with varying degrees of experience in industry and teaching. Paramount to E4USA was the construction of professional development (PD) experiences and a community of practice that would prepare and support teachers with varying degrees of engineering training instruction as they implemented the yearlong course. The perspectives of four out of nine educators were examined during a weeklong, intensive E4USA PD. Two of four educators were considered ‘novices’; one with a background in music and the other in history. The remaining two educators were deemed ‘veterans’ with a total of 15 years of experience as engineers and more than 20 years as engineering educators. Data sources consist of focus groups, surveys, and artifacts created during the PD (e.g., educators’ responses to reflection prompts and letters written to welcome the next cohort). Focus group data is currently being analyzed using inductive coding and the constant comparative method in order to identify emergent themes that speak to the past experience or inexperience of educators with engineering. Artifacts were used to: 1) Triangulate the findings generated from the analysis of focus group, and 2) Further understand how the veteran educators supported the novice educators. We will also use quantitative survey data to examine descriptive statistics, observed score bivariate correlations, and differences in mean scores across novices and veterans to further examine potential common and unique experiences for these educators. The results aim to highlight how the inclusion of educators with a broad spectrum of past experiences with engineering and engineering education can increase educators’ empathy towards students who may be equally hesitant about engineering. The findings from this study are expected to result in implications for how PD and a community of practice may be developed to allow for reciprocal support and mentoring. Results will inform future efforts of E4USA and aim to change the structure of high school engineering education nationwide.« less
  2. The purpose of this study is to re-examine the validity evidence of the engineering design self-efficacy (EDSE) scale scores by Carberry et al. (2010) within the context of secondary education. Self-efficacy refers to individuals’ belief in their capabilities to perform a domain-specific task. In engineering education, significant efforts have been made to understand the role of self-efficacy for students considering its positive impact on student outcomes such as performance and persistence. These studies have investigated and developed measures for different domains of engineering self-efficacy (e.g., general academic, domain-general, and task-specific self-efficacy). The EDSE scale is a frequently cited measure thatmore »examines task-specific self-efficacy within the domain of engineering design. The original scale contains nine items that are intended to represent the engineering design process. Initial score validity evidence was collected using a sample consisting of 202 respondents with varying degrees of engineering experience including undergraduate/graduate students and faculty members. This scale has been primarily used by researchers and practitioners with engineering undergraduate students to assess changes in their engineering design self-efficacy as a result of active learning interventions, such as project-based learning. Our work has begun to experiment using the scale in a secondary education context in conjunction with an increased introduction to engineering in K-12 education. Yet, there still is a need to examine score validity and reliability of this scale in non-undergraduate populations such as secondary school student populations. This study fills this important gap by testing construct validity of the original nine items of the EDSE scale, supporting proper use of the scale for researchers and practitioners. This study was conducted as part of a larger, e4usa project investigating the development and implementation of a yearlong project-based engineering design course for secondary school students. Evidence of construct validity and reliability was collected using a multi-step process. First, a survey that includes the EDSE scale was administered to the project participating students at nine associated secondary schools across the US at the beginning of Spring 2020. Analysis of collected data is in progress and includes Exploratory Factor Analysis (EFA) on the 137 responses. The evidence of score reliability will be obtained by computing the internal consistency of each resulting factor. The resulting factor structure and items will be analyzed by comparing it with the original EDSE scale. The full paper will provide details about the psychometric evaluation of the EDSE scale. The findings from this paper will provide insights on the future usage of the EDSE scale in the context of secondary engineering education.« less
  3. Concurrent enrollment enables high school teachers approved by a partnering college or university to teach college-level coursework to their students. The collaborative research-practice partnership project CS-through-CE examines if and how concurrent enrollment (CE) programs can effectively broaden participation in computing for secondary students. In the CS-through-CE project two participating higher education institutions - Capital Community College (CCC) in Hartford, CT, and Southwest Minnesota State University (SMSU) in Marshall, MN - collaborated with the Mobile Computer Science Principles (CSP) team to train secondary teachers to teach the Mobile CSP course, and then offer the Mobile CSP course as a CE course.more »In this experience paper, faculty from CCC and SMSU detail their experiences recruiting secondary partners to teach Mobile CSP as a CE course, including the barriers and challenges encountered and the strategies identified for overcoming them. Additionally, participating secondary instructors from Hartford Trinity Magnet College Academy in Hartford, CT and Northeast Range School in Babbit, MN detail their experiences teaching Mobile CSP as a CE course in their high schools. They share their experiences teaching Mobile CSP as a CE course, contrast this experience to teaching the course in an Advanced Placement (AP) format, and detail the benefits they see in each modality. The experiences of the college faculty and secondary instructors in this paper are informative for any secondary or post-secondary educator interested in cultivating or expanding pathways in CS through concurrent enrollment.« less
  4. Research Experience for Teachers (RET) programs are National Science Foundation (NSF) funded programs designed to provide K- 12 Science, Technology, Engineering, and Mathematics (STEM) teachers with immersive, hands-on research experiences at Universities around the country. The NSF RET in nanotechnology encourages teachers to translate cutting-edge research into culturally relevant Project-Based Learning (PjBL) and engineering curriculum. Traditionally, the evaluation of RET programs focuses on the growth and development of teacher self-efficacy, engineering content knowledge gains, or classroom implementation of developed curriculum materials. However, reported methods for evaluating the impact of RETs on their female, minority student populations' high school graduation andmore »undergraduate STEM major rates are limited. This study's objective was to compare RET high school student graduation rates and undergraduate STEM major rates across gender, race, and ethnicity to a comparison sample to determine the RET program's long-term impact on students' likelihood of pursuing STEM careers. The approach of collecting and analyzing the Texas Education Research Center Database (EdRC) data is a novel methodology for assessing RET programs' effectiveness on students. The EdRC is a repository of K-12 student data from the Texas Education Agency (TEA) and Higher Education data from the Texas Higher Education Coordinating Board (THECB). This joint database contains demographic, course registration, graduation, standardized testing, and college major, among others, for all students that attended a K-12 public school in Texas and any college in Texas, public or private. The RET program participants at Rice University (2010 – 2018) taught numerous students, a sample size of 11,240 students. A propensity score matching generated the student comparison group within the database. Students' school campus, gender, race/ethnic status, and English proficiency status were applied to produce a graduation comparison sample size of 11,240 students of Non-RET participants. Linking the TEA database to the THECB database resulted in college STEM participants and comparison sample sizes of 4,029 students. The project team conducted a logistic regression using RET status to predict high school graduation rates as a whole and by individual variables: gender, Asian American, Black, Caucasian, and Latinx students. All models were significant at p less than 0.05, with models in favor of students RET teachers. The project team conducted a logistic regression using RET status to predict student STEM undergraduate major rates as a whole and by individual variables: Gender, Asian American, Black, Caucasian, and Latinx students. African American and Caucasian models were significant at p less than 0.05; Gender, Asian American, and Latinx models were marginally significant (0.05 less than p greater than 0.1), where RET students had higher STEM major rates than matched controls. The findings demonstrate that RET programs have a long-term positive impact on the students' high school graduation rates and undergraduate STEM major rates. As teachers who participate in the RET programs are more likely to conduct courses using PjBL strategies and incorporate real-world engineering practices, female and minority students are more likely to benefit from these practices and seek careers utilizing these skills.« less
  5. This research paper describes a study of elementary teacher learning in an online graduate program in engineering education for in-service teachers. While the existing research on teachers in engineering focuses on their disciplinary understandings and beliefs (Hsu, Cardella, & Purzer, 2011; Martin, et al., 2015; Nadelson, et al., 2015; Van Haneghan, et al., 2015), there is increasing attention to teachers' pedagogy in engineering (Capobianco, Delisi, & Radloff, 2018). In our work, we study teachers' pedagogical sense-making and reflection, which, we argue, is critical for teaching engineering design. This study takes place in [blinded] program, in which teachers take four graduatemore »courses over fifteen months. The program was designed to help teachers not only learn engineering content, but also shift their thinking and practice to be more responsive to their students. Two courses focus on pedagogy, including what it means to learn engineering and instructional approaches to support this learning. These courses consist of four main elements, in which teachers: 1) Read data-rich engineering education articles to reflect on learning engineering; 2) Participate in online video clubs, looking at classroom videos of students’ engineering and commenting on what they notice; 3) Conduct interviews with learners about the mechanism of a pull-back car; and 4) Plan and teach engineering lessons, collecting and analyzing video from their classrooms. In the context of this program, we ask: what stances do teachers take toward learning and teaching engineering design? What shifts do we observe in their stances? We interviewed teachers at the start of the program and after each course. In addition to reflecting on their learning and teaching, teachers watched videos of students’ engineering and discussed what they saw as relevant for teaching engineering. We informally compared summaries from previous interviews to get a sense of changes in how participants talked about engineering, how they approached teaching engineering, and what they noticed in classroom videos. Through this process, we identified one teacher to focus on for this paper: Alma is a veteran 3rd-5th grade science teacher in a rural, racially-diverse public school in the southeastern region of the US. We then developed content logs of Alma's interviews and identified emergent themes. To refine these themes, we looked for confirming and disconfirming evidence in the interviews and in her coursework in the program. We coded each interview for these themes and developed analytic memos, highlighting where we saw variability and stability in her stances and comparing across interviews to describe shifts in Alma's reasoning. It was at this stage that we narrowed our focus to her stances toward the engineering design process (EDP). In this paper, we describe and illustrate shifts we observed in Alma's reasoning, arguing that she exhibited dramatic shifts in her stances toward teaching and learning the EDP. At the start of the program, she was stable in treating the EDP as a series of linear steps that students and engineers progress through. After engaging and reflecting on her own engineering in the first course, she started to express a more fluid stance when talking more abstractly about the EDP but continued to take it up as a linear process in her classroom teaching. By the end of the program, Alma exhibited a growing stability across contexts in her stance toward the EDP as a fluid set of overlapping practices that students and engineers could engage in.« less