- Award ID(s):
- 2100401
- PAR ID:
- 10435511
- Date Published:
- Journal Name:
- International Collaboration toward Educational Innovation for All: International Society of the Learning Sciences (ISLS) Annual Meeting 2023
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
While the demand for interdisciplinary knowledge is undeniable, there are formidable challenges when offering graduate education to Engineering students. To address that, we designed an educational research project that delves into the effectiveness of an interdisciplinary National Science Foundation (NSF) Research Trainee (NRT) program for engineering students studying robotics and autonomous systems. This newly funded NRT program aims to train next-generation scientists and engineers with professional skills through interdisciplinary courses such as leadership, business, and psychology in addition to cutting-edge technical knowledge in the field. We are using retrospective surveys and content analysis to identify student experience with interdisciplinary training and education programs. Both quantitative and qualitative analysis evidenced an increased level of confidence in soft skills such as interdisciplinary understanding, communication, and collaboration skills throughout participating in the interdisciplinary NRT program.more » « less
-
Growth in the green jobs sector has increased demand for college graduates who are prepared to enter the workforce with interdisciplinary sustainability skills. Simultaneously, scholarly calls for interdisciplinary collaboration in the service of addressing the societal challenges of enhancing resilience and sustainability have also increased in recent years. However, developing, executing, and assessing interdisciplinary content and skills at the post-secondary level has been challenging. The objective of this paper is to offer the Food-Energy-Water (FEW) Nexus as a powerful way to achieve sustainability competencies and matriculate graduates who will be equipped to facilitate the transformation of the global society by meeting the targets set by the United Nations Sustainable Development Goals. The paper presents 10 curricular design examples that span multiple levels, including modules, courses, and programs. These modules enable clear evaluation and assessment of key sustainability competencies, helping to prepare graduates with well-defined skillsets who are equipped to address current and future workforce needs.more » « less
-
null (Ed.)The paper discusses the use of Productive Disciplinary Engagement (PDE) for a curricular project that features a technology-based alternate reality game (ARG) with the objective of teaching undergraduate students about the collaborative nature of STEM careers. Much of the PDE research uses PDE as either a design-principle or as an analytics lens. This project does both. Most of this extant research focuses on spoken discourse to teach disciplinary knowledge. This project uses workplace documentary texts that are embedded within a semester-long undergraduate course designed to teach students collaboration skills using the context of natural disasters. A range of texts are used in this design from didactic to disciplinary. Students learn about professional work through educational renditions of professional cultural historical activity systems. This paper focuses on design decisions and illustrates some ways that workplace documents can be used in education.more » « less
-
Abstract Within the broad field of plant sciences, what are the most pressing challenges and opportunities to advance? Answers to this question usually include food and nutritional security, climate change mitigation, adaptation of plants to changing climates, preservation of biodiversity and ecosystem services, production of plant‐based proteins and products, and growth of the bioeconomy. Genes and the processes their products carry out create differences in how plants grow, develop, and behave, and thus, the key solutions to these challenges lie squarely in the space where plant genomics and physiology intersect. Advancements in genomics, phenomics, and analysis tools have generated massive datasets, but these data are complex and have not always generated scientific insights at the anticipated pace. Further, new tools may need to be created or adapted, and field‐relevant applications tested, to advance scientific discovery derived from such datasets. Meaningful, relevant conclusions and connections from genomics and plant physiological and biochemical data require both subject matter expertise and the collaborative skills needed to work together outside of specific disciplines. Bringing the best expertise to bear on complex problems in plant sciences requires enhanced, inclusive, and sustained collaboration across disciplines. However, despite significant efforts to enable and sustain collaborative research, a variety of challenges persist. Here, we present the outcomes and conclusions of two workshops convened to address the need for collaboration between scientists engaged in plant physiology, genetics, and genomics and to discuss the approaches that will create the necessary environments to support successful collaboration. We conclude with approaches to share and reward collaboration and the need to train inclusive scientists that will have the skills to thrive in interdisciplinary contexts.
-
null (Ed.)ABSTRACT The demonstrated gap between skills needed and skills learned within a college education places both undergraduates seeking gainful employment and the employers seeking highly skilled workers at a disadvantage. Recent and up-and-coming college graduates should possess 21st century skills (i.e., communication, collaboration, problem solving), skills that employers deem necessary for the workplace. Research shows that the development of this skillset can help narrow the gap in producing highly skilled graduates for the science, technology, engineering, and mathematics (STEM) workforce. We propose the development of 21st century skills by utilizing the project-based learning (PjBL) framework and creating the inclusive biologist exploring active research with students (iBEARS) program, allowing undergraduate students to hone their 21st century skills and prepare for transition and success within the workplace.more » « less