skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 26, 2025

Title: Interdisciplinary Convergence in Robotics and Autonomous Systems
While the demand for interdisciplinary knowledge is undeniable, there are formidable challenges when offering graduate education to Engineering students. To address that, we designed an educational research project that delves into the effectiveness of an interdisciplinary National Science Foundation (NSF) Research Trainee (NRT) program for engineering students studying robotics and autonomous systems. This newly funded NRT program aims to train next-generation scientists and engineers with professional skills through interdisciplinary courses such as leadership, business, and psychology in addition to cutting-edge technical knowledge in the field. We are using retrospective surveys and content analysis to identify student experience with interdisciplinary training and education programs. Both quantitative and qualitative analysis evidenced an increased level of confidence in soft skills such as interdisciplinary understanding, communication, and collaboration skills throughout participating in the interdisciplinary NRT program.  more » « less
Award ID(s):
2244082
NSF-PAR ID:
10519077
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ASEE
Date Published:
Subject(s) / Keyword(s):
interdisciplinary
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The purpose of this research paper is to explore whether participation in an interdisciplinary collaboration program partnering Preservice Teachers (PST) and Undergraduate Engineering Students (UES) results in an increase in teamwork effectiveness. The interdisciplinary collaboration was designed as a service-learning project within existing undergraduate programs that included the development and delivery of engineering content to a K-12 audience. The collaborations were integrated into existing courses in two colleges, engineering and education. The Behaviorally Anchored Rating Scale (BARS) version of the Comprehensive Assessment of Team Member Effectiveness (CATME) was used midway and at the end of the project to evaluate teamwork effectiveness. Results of the analysis indicated that both PST and UES experienced a significant increase in team-member effectiveness over the course of the project in four of the five factors: interacting with team members, keeping the team on track, expecting quality, and having relevant knowledge, skills and abilities. A noticeable positive increase in student attitudes towards the task was also observed between the midway and the end of the project. Analysis also suggests that the gain in the teamwork effectiveness did not differ across majors, with both UES and PST showing similar gains. Findings from this study provide some preliminary evidence that an innovative interdisciplinary service learning experience partnering engineering and education students, had a positive impact on their teamwork skills. 
    more » « less
  2. Innovations by engineers and physical scientists working at the frontiers of microbiome engineering and discovery requires in-depth understanding of microbiome systems with parallel skills in bioinformatics and biostatistics. Despite the importance of integrating bioinformatics and biology into graduate student training in fields outside traditional biological sciences, academic institutions remain challenged with including these disciplines across departmental boundaries. Furthermore, it is critical for students in engineering, bioinformatics, and biostatistics to understand fundamentals behind the biological systems they model, and for biology students to gain competencies in applying bioinformatics and biostatistics to biological questions. To address these needs, we developed the Integrative Bioinformatics for Investigating and Engineering Microbiomes (IBIEM) graduate training partnership between Duke University and North Carolina Agricultural and Technical State University, which was funded by the National Science Foundation Research Traineeship (NRT) program. IBIEM’s goals include training interdisciplinary groups of students to: (a) transform conceptualization and develop skills for application of quantitative biology in microbiome areas; (b) perform cutting edge research requiring interdisciplinary team skills; and to (c) communicate their research across disciplinary barriers and to diverse audiences. The pedagogical framework adapted to foster trainee engagement is learner-centered teaching which emphasizes the importance of selfdirected learning with parallel ongoing assessment to optimize student outcomes. Since IBIEM trainees’ goals as well as entry-level knowledge and skills across disciplines varied greatly, program implementation was found to be challenging and required rigorous evaluation and refinements for effective training across disciplines and skill levels. A comprehensive program evaluation over five years found that the strongest learning and skills outcomes were linked to several “best practices”. Early provision of depth in fundamentals in R programming and reproducible research was found to be critical to “jump start” students without programming backgrounds. Addition of an overview of microbiome experimental design and analysis added important context as to how and where in the research process informatics fits into design progression and was highly motivating to students. Course modality was found to impact trainee outcomes with in-person classes that included hands-on practice and feedback showing greater improvements in training outcomes over hybrid, flipped and virtual course modalities. Furthermore, introduction of low, medium, and high level “challenges” along with in-person tutoring was found to be impactful in building a common foundation to span expertise levels and for engaging students across entry and advanced levels. Training impacts peaked during year four with cumulative implementation of revised strategies. Innovative training revisions and inclusion of critical elements was strongly linked to program satisfaction and ratings of advances in technical, professional and career skills as well as post-training carry over into trainees’ own research and leadership in their labs and careers. Furthermore, this training collaboration and partnership provided the foundation and training model for the newly funded NSF Engineering Research Center for Precision Microbiome Engineering (PreMiEr) for work in the critical area of engineering the microbiome in built environments. 
    more » « less
  3. This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today's complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field can enhance their perspective and ability to develop innovative solutions. However, research suggests that it is challenging even for professional engineers to understand the roles, responsibilities, and integration of various disciplines, and engineering curricula have traditionally left little room for development of non-technical skills such as effective communication with a range of audiences and an ability to collaborate in multidisciplinary teams. Meanwhile, preservice teachers need new technical knowledge and skills that go beyond traditional core content knowledge, as they are now expected to embed engineering into science and coding concepts into traditional subject areas. There are nationwide calls to integrate engineering and coding into PreK-6 education as part of a larger campaign to attract more students to STEM disciplines and to increase exposure for girls and minority students who remain significantly underrepresented in engineering and computer science. Accordingly, schools need teachers who have not only the knowledge and skills to integrate these topics into mainstream subjects, but also the intention to do so. However, research suggests that preservice teachers do not feel academically prepared and confident enough to teach engineering-related topics. This interdisciplinary project provided engineering students with an opportunity to develop interprofessional skills as well as to reinforce their technical knowledge, while preservice teachers had the opportunity to be exposed to engineering content, more specifically coding, and develop competence for their future teaching careers. Undergraduate engineering students enrolled in a computational methods course and preservice teachers enrolled in an educational technology course partnered to plan and deliver robotics lessons to fifth and sixth graders. This paper reports on the effects of this collaboration on twenty engineering students and eight preservice teachers. T-tests were used to compare participants’ pre-/post- scores on a coding quiz. A post-lesson written reflection asked the undergraduate students to describe their robotics lessons and what they learned from interacting with their cross disciplinary peers and the fifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’ perceptions were generally positive, recounting enjoyment interacting with elementary students and gaining communication skills from collaborating with non-technical partners. Preservice teachers demonstrated gains in their technical knowledge as measured by the coding quiz, but reported lacking the confidence to teach coding and robotics independently of their partner engineering students. Both groups reported gaining new perspectives from working in interdisciplinary teams and seeing benefits for the fifth and sixth grade participants, including exposing girls and students of color to engineering and computing. 
    more » « less
  4. Graduate training often takes a monodisciplinary approach that is not informed by best practices, ignores the needs and preferences of students, and overlooks the increasingly interdisciplinary and international nature of research. This is unfortunate, particularly since graduate education that is fully integrated with interdisciplinary research can help students become part of a trained and diverse workforce equipped to meet society’s many challenges. Against this backdrop, a National Science Foundation Research Traineeship (NRT) program is being established at the University of Kentucky leveraging the most effective instruments for the training of STEM professionals, such as network-based graduate student mentoring and career preparation encompassing both technical and professional skillsets. Briefly, the training graduate students will receive – in a way that is fully integrated with the research they perform – includes: 1) tools such as individual development plans and developmental network maps; 2) a multi-departmental and interdisciplinary course on research-related content; 3) a seminar course on transferrable skills (ethics, research, communication, teaching, mentoring, entrepreneurship, teamwork, management, leadership, outreach, etc.); 4) a certificate to be awarded once students complete the two courses above and garner additional credits from an interdisciplinary curriculum of research-related courses; 5) summer internships at other departments and at external institutions (other universities, industry, national laboratories) nationwide or abroad; 6) an annual research-related symposium including all elements of a scientific conference; 7) internal collaborative research grants for participants to fund and pursue their own ideas; 8) fields trips to facilities related to the research; and 9) coaching on job hunting as well as résumé, motivation letter and interview preparation. Since a workforce equipped to meet society’s challenges must be both well trained and diverse, multiple initiatives will ensure that this NRT will broaden participation in STEM. Recruitment-wise, close collaboration with a number of entities will provide this NRT with a broad recruitment pool of talented and diverse students. Moreover, collaboration with these entities will provide trainees with ample opportunities to acquire, practice and refine their professional skills, as trainees present their results and recruit in conferences, meetings and outreach events organized by these entities, become members and/or join their leadership, and expand their professional and mentoring network in the process. In addition, minority trainees will be surveyed periodically to probe their feelings of well-being, preparation, acceptance, belonging and distress, as well as their perception of how well structured their departments and programs are. According to recent literature, these factors determine whether or not they perform (i.e., publish) at rates comparable to their male majority peers. Saliently, the evaluation of the educational model employed will afford a comprehensive understanding not only of the academy components that were more utilized and impactful, but will reveal the individual mentoring and skill-building facets of the program driving its successful implementation. The evaluation plan includes outcomes, performance measures, an evaluation timetable, benchmarks and a description of how formative evaluation will improve practice, the evaluation process also extending to research activities. 
    more » « less
  5. null (Ed.)
    This Research Full Paper examines the concept of flow, derived from Zen philosophy and positive psychology, and how interdisciplinary STEAM (science, technology, engineering, arts, and mathematics) and disciplinary electrical engineering students find flow within their coursework and their capstone design experiences. STEAM education incorporates the arts and humanities into the traditional disciplines of STEM. However, students involved in this interdisciplinary space often struggle to find a balance in applying both creative and logical knowledge in their work. The theoretical framework for this study leverages the concept of pure experience from Zen philosophy to analyze flow states in students’ interdisciplinary experiences. This theory focuses on the unity of subject/object and rejection of purely logical, positivist thinking for more integrative knowledge acquisition while in flow states. In this secondary analysis, we analyzed interviews conducted with electrical engineering and STEAM students. STEAM students from an interdisciplinary program were found to approach their coursework differently than engineering students, likely because of a difference in assignment guidelines. The engineering students in the study had more restrictive guidelines, while the STEAM students were given more freedom to move between disciplines. Alternatively, students from both disciplines shared many similar values about education and knowledge including the need for enjoyment and personal interest within the coursework as well as finding a balance between logical thought and the desire for creation that a student’s program did not determine whether they reached a state of pure experience, or flow, in their work. However, rigid adherence to either the arts or engineering seemed to create disharmony and very few students find cohesion between their values and their approach to knowledge. This paper points to new insights into the design of capstone experiences for STEAM education. 
    more » « less