skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An investigation of multi-parameters effects on the performance of liquid-to-liquid heat exchangers in rack level cooling
As the demand for faster and more reliable data processing is increasing in our daily lives, the power consumption of electronics and, correspondingly, Data Centers (DCs), also increases. It has been estimated that about 40% of this DCs power consumption is merely consumed by the cooling systems. A responsive and efficient cooling system would not only save energy and space but would also protect electronic devices and help enhance their performance. Although air cooling offers a simple and convenient solution for Electronic Thermal Management (ETM), it lacks the capacity to overcome higher heat flux rates. Liquid cooling techniques, on the other hand, have gained high attention due to their potential in overcoming higher thermal loads generated by small chip sizes. In the present work, one of the most commonly used liquid cooling techniques is investigated based on various conditions. The performance of liquid-to-liquid heat exchange is studied under multi-leveled thermal loads. Coolant Supply Temperature (CST) stability and case temperature uniformity on the Thermal Test Vehicles (TTVs) are the target indicators of the system performance in this study. This study was carried out experimentally using a rack-mount Coolant Distribution Unit (CDU) attached to primary and secondary cooling loops in a multi-server rack. The effect of various selected control settings on the aforementioned indicators is presented. Results show that the most impactful PID parameter when it comes to fluctuation reduction is the integral (reset) coefficient (IC). It is also concluded that fluctuation with amplitudes lower than 1 ᵒC is converged into higher amplitudes  more » « less
Award ID(s):
2209776
PAR ID:
10435662
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
22nd IEEE ITHERM Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Direct Liquid Cooling (DLC) has emerged as a promising technology for thermal management of high-performance computing servers, enabling efficient heat dissipation and reliable operation. Thermal performance is governed by several factors, including the coolant physical properties and flow parameters such as coolant inlet temperature and flow rate. The design and development of the coolant distribution manifold to the Information Technology Equipment (ITE) can significantly impact the overall performance of the computing system. This paper aims to investigate the hydraulic characterization and design validation of a rack-level coolant distribution manifold or rack manifold. To achieve this goal, a custom-built high power-density liquid-cooled ITE rack was assembled, and various cooling loops were plugged into the rack manifold to validate its thermal performance. The rack manifold is responsible for distributing the coolant to each of these cooling loops, which is pumped by a CDU (Coolant Distribution Unit). In this study, pressure drop characteristics of the rack manifold were obtained for flow rates that effectively dissipate the heat loads from the ITE. The pressure drop is a critical parameter in the design of the coolant distribution manifold since it influences the flow rate and ultimately the thermal performance of the system. By measuring the pressure drop at various flow rates, the researchers can accurately determine the optimum flow rate for efficient heat dissipation. Furthermore, 1D flow network and CFD models of the rack-level coolant loop, including the rack manifold, were developed, and validated against experimental test data. The validated models provide a useful tool for the design of facility-level modeling of a liquid-cooled data center. The CFD models enable the researchers to simulate the fluid flow and heat transfer within the cooling system accurately. These models can help to design the coolant distribution manifold at facility level. The results of this study demonstrate the importance of the design and development of the coolant distribution manifold in the thermal performance of a liquid-cooled data center. The study also highlights the usefulness of 1D flow network and CFD models for designing and validating liquid-cooled data center cooling systems. In conclusion, the hydraulic characterization and design validation of a rack-level coolant distribution manifold is critical in achieving efficient thermal management of high-performance computing servers. This study presents a comprehensive approach for hydraulic characterization of the coolant distribution manifold, which can significantly impact the overall thermal performance and reliability of the system. The validated models also provide a useful tool for the design of facility-level modeling of a liquid-cooled data center. 
    more » « less
  2. The rapid growth in data center workloads and the increasing complexity of modern applications have led to significant contradictions between computational performance and thermal management. Traditional air-cooling systems, while widely adopted, are reaching their limits in handling the rising thermal footprints and higher rack power densities of next-generation servers, often resulting in thermal throttling and decreased efficiency, emphasizing the need for more efficient cooling solutions. Direct-to-chip liquid cooling with cold plates has emerged as a promising solution, providing efficient heat dissipation for high-performance servers. However, challenges remain, such as ensuring system stability under varying thermal loads and optimizing integration with existing infrastructure. This comprehensive study digs into the area of data center liquid cooling, providing a novel, comprehensive experimental investigation of the critical steps and tests necessary for commissioning coolant distribution units (CDUs) in direct-to-chip liquid-cooled data centers. It carefully investigates the hydraulic, thermal, and energy aspects, establishing the groundwork for Liquid-to-Air (L2A) CDU data centers. A CDU’s performance was evaluated under different conditions. First, the CDU’s maximum cooling capacity was evaluated and found to be as high as 89.9 kW at an approach temperature difference (ATD) of 18.3 ◦C with a 0.83 heat exchanger effectiveness. Then, to assess the cooling performance and stability of the CDU, a low-power test and a transient thermohydraulic test were conducted. The results showed instability in the supply fluid temperature (SFT) caused by the oscillation in fan speed at low thermal loads. Despite this, heat removal rates remained constant across varying supply air temperatures (SATs), and a partial power usage effectiveness (PPUE) of 1.042 was achieved at 100 % heat load (86 kW) under different SATs. This research sets a foundation for improving L2A CDU performance and offers practical insights for overcoming current cooling limitations in data centers. 
    more » « less
  3. The ability of traditional room-conditioning systems to accommodate expanding information technology loads is limited in contemporary data centers (DCs), where the storage, storing, and processing of data have grown quickly as a result of evolving technological trends and rising demand for online services, which has led to an increase in the amount of waste heat generated by IT equipment. Through the implementation of hybrid air and liquid cooling technologies, targeted, on-demand cooling is made possible by employing a variety of techniques, which include but are not limited to in-row, overhead, and rear door heat exchanger (HX) cooling systems. One of the most common liquid cooling techniques will be examined in this study based on different conditions for high-power density racks (+50 kW). This paper investigates the cooling performance of a liquid-to-air in-row coolant distribution unit (CDU) in test racks containing seven thermal test vehicles (TTVs) under various conditions, focusing on cooling capacity and HX effectiveness under different supply air temperatures (SAT). This test rig has the necessary instruments to monitor and analyze the experiments on both the liquid coolant and the air sides. Moreover, another experiment is conducted to assess the performance of the CDU that runs under different control fan schemes, as well as how the change of the control type will affect the supply fluid temperature and the TTV case temperatures at 10%, 50%, and 100% of the total power. Finally, suggestions for the best control fan scheme to use for these systems and units are provided at the conclusion of the study. 
    more » « less
  4. In response to the exponential growth of online platforms and the rise of web-based Artificial Intelligence (AI), the demand for computational power and the expansion of data centers have surged significantly. This trend necessitates advanced cooling strategies and heightened energy efficiency to address the increasing power densities of Information Technology (IT) equipment and the consequent rise in energy consumption. Consequently, there is a significant pivot towards efficient cooling mechanisms that emphasize thermal management and energy efficiency. Against this backdrop, our study thoroughly evaluates a two-phase direct-to-chip liquid cooling system's ability to effectively manage and dissipate heat in high-density rack environments. Central to our research is the deployment of a highly efficient Refrigerant-to-Liquid (R2L) Coolant Distribution Unit (CDU) across multi-racks, which face high thermal demands. This innovative system, featuring an in-row pumped two-phase CDU with a cooling capacity of 160 kW, is intricately integrated with row and rack manifolds and server cooling loops to ensure optimal cooling performance. To accurately simulate the thermal loads encountered in real-world data center operations, the study employs Thermal Testing Vehicles (TTVs). These 3U TTVs are equipped with 2.5 kW heaters, covering an extensive area of 2500 mm², thereby effectively replicating server thermal loads up to 10 kW. The investigation starts with a detailed description of the system's design and continues with the commissioning process. This process includes extensive hydraulic and thermal testing, along with a comprehensive assessment of the impact of pressure drops across the system, focusing on supply manifolds, cooling loops, dry breaks, and return manifolds, utilizing Cooling Loops (CLs) each containing four Cold Plates (CPs). The study culminates in the analysis of experimental data from heating the TTVs, focusing on the efficiency of two-phase cooling in transferring heat from the TTVs to chilled water using R134a refrigerant as the performance benchmark. Future directions include exploring eco-friendly cooling practices by investigating alternative green refrigerants with low Global Warming Potential (GWP) to replace R134a, aligning with global sustainability goals and the imperative to reduce greenhouse gas emissions. The observed maximum values were calculated at a specific volumetric flow rate of 0.48 LPM/kW and a Tcase as low as 56.4 °C was achieved. These results demonstrate the system's capability to significantly enhance thermal management in data centers, tackle the challenges presented by high-power density chips, and encourage broader adoption of two-phase cooling technologies as a sustainable strategy for thermal regulation in the face of increasing computational demands. 
    more » « less
  5. Owing to the dramatic increase in IT power density and energy consumption, the data center (DC) sector has started adopting thermally- and energy-efficient liquid cooling methods. This study examines a single-phase direct-to-chip liquid cooling approach for three high-heat-density racks, utilizing two liquid-to-air (L2A) cooled coolant distribution units (CDUs) and a combined total heat load of 128 kW. An experimental setup was developed to test different types of CDUs, cooling loops, and thermal testing vehicles (TTVs) for different operating conditions. IR images and the collected data were used to investigate the effect of air recirculation between cold and hot aisle containments on the CDU’s performance and stability of supply air temperature (SAT). Three different types of cooling loops (X, Y, and Z) were characterized thermally and hydraulically. Results show that Type Y has the lowest cold plate thermal resistance and pressure drop, among others. In a later test that included a single rack at a heat load of 53 kW and a single CDU, the heat capture ratio for fluid was found to be 94%. Experiments show that using blanking panels on the back of the racks limits hot air recirculation and maintains a steady SAT in the cold aisle. Finally, the CDU performance was evaluated at a high heat load for the three racks at 128 kW, and the average cooling capacity of the units is 58.6 kW, and the effectiveness values for CDU 1 and CDU 2 are 0.83 and 0.82, respectively. 
    more » « less