skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Natural Hazards Research Summit 2022: Establishing Fragility Curves for Seismic Resilience of Mass Timber Buildings with Self-Centering Cross-Laminated Timber Shear Walls
Driven by demand for sustainable buildings and a reduction in construction time, mass timber buildings, specifically cross-laminated timber (CLT), is being more widely used in mid-rise buildings in the US. Low damage post-tensioned self-centering (SC) CLT shear walls (SC-CLT walls) provide an opportunity to develop seismically resilient CLT buildings. Previous research focused primarily on the lateral-load response under unidirectional loading of isolated self-centering timber walls, without considering the interaction with the adjacent building structural components, i.e., the floor diaphragms, collector beams, and gravity load system. Buildings response under seismic loading is multidirectional and there are concerns that multidirectional loading may be more damaging to SC-CLT wall panels and the adjacent building structural components than unidirectional loading, which affects the potential seismic resilience of buildings with SC-CLT walls. A series of lateral-load tests of a 0.625-scale timber sub-assembly was conducted at the NHERI Lehigh Large-Scale Multi-Directional Hybrid Simulation Experimental Facility to investigate the the lateral-load response and damage of SC-CLT walls and the capability of the adjacent building structural components i.e., the floor diaphragms, collector beams, and gravity load system to accommodate the building response and the controlled-rocking of the SC-CLT walls under multidirectional lateral loading.  more » « less
Award ID(s):
2037771
PAR ID:
10435927
Author(s) / Creator(s):
; ;
Publisher / Repository:
Designsafe-CI
Date Published:
Subject(s) / Keyword(s):
Cross-laminated timber Self-centering Multidirectional lateral loading Lateral-load response Damage states Repair Fragility functions Earthquake performance.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Driven by demand for sustainable buildings and reduction in construction time, mass timber, specifically cross-laminated timber (CLT), is being more widely used in mid-rise buildings in the US. In areas of the US with a significant seismic (i.e. earthquake) hazard, mass timber buildings that are seismically resilient are of significant interest. Low damage post-tensioned self-centering CLT shear walls (SC-CLT walls) provide an opportunity to develop seismically resilient CLT buildings. There is however insufficient knowledge of the lateral-load response and damage states of SC-CLT walls under multidirectional seismic loading conditions, which can have a pronounce effect on the seismic resilience of buildings with SC-CLT walls. In order to fill this knowledge gap, a series of lateral-load tests were performed at the NHERI Lehigh Large-Scale Multi-directional Hybrid Simulation Experimental Facility to investigate the multidirectional cyclic behavior of a low damage, resilient three-dimensional CLT building sub-assembly with SC-CLT coupled shear walls, CLT floor diaphragm, collector beams, and gravity load system. Comparisons are made between the lateral-load experimental response of the SC-CLT walls under unidirectional and multidirectional cyclic loading. 
    more » « less
  2. This paper presents an experimental study on the multidirectional cyclic lateral-load response of post-tensioned self-centering (SC) cross-laminated timber (CLT) shear walls. SC-CLT shear wall damage states are introduced and qualitatively defined in terms of the repairs needed to restore the lateral-load response of the SC-CLT wall. A comparison between SC-CLT wall damage states under unidirectional (in-plane) and multidirectional (in-plane and out-of-plane) lateral loading is presented. The experimental results show that the initiation of SC-CLT wall damage occurs at smaller story drifts under multidirectional loading compared to unidirectional loading. Engineering demand parameters (EDPs) are used to quantify the SC-CLT wall damage states. Uncertainty in the EDP value when a damage state occurs is considered and quantified. Using the experimental results, component (i.e., a CLT wall panel corner) and system (i.e., an entire SC-CLT wall) fragility functions are developed and presented. 
    more » « less
  3. This paper presents an experimental study on the multi-directional cyclic lateral-load response of post-tensioned self-centering (SC) cross-laminated timber (CLT) shear walls. The SC-CLT wall damage states are introduced and qualitatively defined in terms of the level of effort needed to repair the wall to restore its initial functional state. A comparison between SC-CLT wall damage states under unidirectional and multi-directional loading is presented. The experimental test results show that the SC-CLT wall damage state initiation occurs at lower story-drifts under multi-directional loading compared to unidirectional loading. The SC-CLT wall damage states are quantified in terms of the engineering demand parameter (EDP) defined as wall story-drift. Fragility functions that relate the conditional probability of the occurrence of a selected damage state at a wall corner to the EDP are developed. The results reinforce the observations that multi-directional loading on the CLT shear walls causes more damage that unidirectional loading. 
    more » « less
  4. This paper presents an experimental study on the multidirectional cyclic lateral-load response of repaired post-tensioned self-centering (SC) controlled-rocking cross-laminated timber (CLT) shear walls (SC-CLT walls). Three SC-CLT wall specimens were investigated: an initially undamaged SC-CLT wall with unreinforced wall panels, a repaired SC-CLT wall with steel-plate reinforcement, and a repaired SC-CLT wall with steel-plate reinforcement and steel bearing plates on the foundation. An evaluation of the experimental response of SC-CLT walls (with and without steel-plate reinforcement) under multidirectional cyclic lateral loading is presented, with emphasis on changes in lateral stiffness and strength caused by damage. Steel-plate wall panel reinforcement is investigated as a repair approach to restore the lateral stiffness and strength of damaged SC-CLT walls. Steel bearing plates are used to repair (or avoid) localized damage to a concrete foundation when a steel plate–reinforced SC-CLT wall rocks on the foundation. The damage mechanisms affecting the changes in lateral stiffness and strength of each SC-CLT wall specimen are discussed. Assessment of the experimental results demonstrate that these repair methods are effective in restoring the lateral stiffness and strength of a damaged SC-CLT wall 
    more » « less
  5. Drywall partition walls (DPW) could considerably affect the seismic resilience of tall cross-laminated timber (CLT) buildings due to cost and building downtime associated with repair. These drift sensitive components are susceptible to damage at low shaking intensities, and thus controlling or eliminating such damage in low to moderate earthquakes is key to seismic resilience. Conversely, post-tensioned CLT rocking walls have been shown to be a resilient lateral load resistant system for tall CLT building in high seismic areas. A series of tests will be performed at the NHERI Lehigh EF to compare the performance of DPWs with conventional slip-track detailing and alternative telescoping slip-track detailing (track-within-a-track deflection assembly), and to evaluate different approaches for minimizing damage at the wall intersections through the use of gaps. Moreover, a configuration is examined with partition wall encapsulating the rocking wall for fire protection. This paper presents a summary of pre-test studies to design the best configuration of DPW to improve the overall resiliency of the structure. 
    more » « less