Dispositions are cultivable behaviors desirable in the workplace. Examples of dispositions are being adaptable, meticulous, and self-directed. The eleven dispositions described in the CC2020 report should not be confused with the professional knowledge of computing topics, or with skills, including technical skills, along with cross-disciplinary skills such as critical thinking, problem-solving, teamwork, or communication. Dispositions, more inherent to human characteristics, identify personal qualities and behavioral patterns important for successful professional careers. The leaders of this special session collaborate on a multi-institutional project funded by the National Science Foundation. Using their experiences at four higher education institutions, they will demonstrate how to foster dispositions among computing students through two hands-on activities. The audience will get first-hand experience using reflection exercises and vignettes, and will participate in debating their design, merits, and limitations. The resulting interaction will provide the audience ample time to discuss the benefits and challenges of incorporating and fostering dispositions in computing programs. It is hoped that participants will leave with concrete ideas on how to extend the current work to their own courses, programs, and institutions.
more »
« less
Challenges and Successes in Writing BPC Plans for NSF Proposals: A Panel of Peers Discuss Their Approaches
In 2021, National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) directorate implemented a Broadening Participation in Computing (BPC) plan requirement for all medium and larger research proposals in Core, CPS, and SaTC. This panel comprises faculty and administrators from US computing departments who have participated in the writing of Departmental or Project BPC plans, two in response to NSF’s encouragement and one prior. Panelists represent a range of institutions as well as departmental awareness of BPC prior to writing their plans. Regardless of where they or their departments lie in the spectrum of knowing about and implementing BPC activities, and regardless of the current demographic makeup of the students in their major, they all encountered challenges as they wrote their plans. They all also experienced successes, not the least of which is that they succeeded in getting a plan written in accordance with the current guidelines. With the support of a moderator, the three panelists will share their experiences developing BPC plans with the audience, offering lessons learned and tips for overcoming common challenges. Audience members will also receive helpful links and handouts to facilitate the writing of their own departmental or project plans
more »
« less
- PAR ID:
- 10435939
- Date Published:
- Journal Name:
- Grace Hopper Celebration of Women in Computing
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
“CS for All” has set computing on an unusual journey. Those words ask CS to change: to grow from a compelling discipline and useful mindset into a full-fledged human literacy. Just as cogent writing, critical reading, and compelling speaking are today’s hallmarks of literacy, so too will leveraging computing for insight become part of the goals and expectations we all share. This paper considers how Computer Science, both as a discipline and as an academic department, can support this journey. To map the landscape, we first survey the extent of computing’s current curricular reach – beyond CS departments – at a sample of fifty U.S. institutions. We then present findings from three experiments, local to our institutions, which explored interdisciplinary course structures. Both the local and the global overviews suggest that CS departments have, now, a unique opportunity to help smooth computing’s transformation into a modern literacy. It’s in the best interests of all disciplines, together, to bring computing, its resources, and its roles into their distinctive identities.more » « less
-
null (Ed.)Project-based learning can encourage and motivate students to learn through exploring their own interests, but introduces special challenges for novice programmers. Recent research has shown that novice students perceive themselves to be "bad at programming, especially when they do not know how to start writing a program, or need to create a plan before getting started. In this paper, we present PlanIT, a guided planning tool integrated with the Snap! programming environment designed to help novices plan and program their open-ended projects. Within PlanIT, students can add a description for their project, use a to do list to help break down the steps of implementation, plan important elements of their program including actors, variables, and events, and view related example projects. We report findings from a pilot study of high school students using PlanIT, showing that students who used the tool learned to make more specific and actionable plans. Results from student interviews show they appreciate the guidance that PlanIT provides, as well as the affordances it offers to more quickly create program elements.more » « less
-
Bauerle, Cynthia (Ed.)Most science, technology, engineering, and mathematics (STEM) departments inadequately evaluate teaching, which means they are not equipped to recognize or reward effective teaching. As part of a project at one institution, we observed that departmental chairs needed help recognizing the decisions they would need to make to improve teaching evaluation practices. To meet this need, we developed the Guides to Advance Teaching Evaluation (GATEs), using an iterative development process. The GATEs are designed to be a planning tool that outlines concrete goals to guide reform in teaching evaluation practices in STEM departments at research-intensive institutions. The GATEs are grounded in the available scholarly literature and guided by existing reform efforts and have been vetted with STEM departmental chairs. The GATEs steer departments to draw on three voices to evaluate teaching: trained peers, students, and the instructor. This research-based resource includes three components for each voice: 1) a list of departmental target practices to serve as goals; 2) a characterization of common starting places to prompt reflection; and 3) ideas for getting started. We provide anecdotal examples of potential uses of the GATEs for reform efforts in STEM departments and as a research tool to document departmental practices at different time points.more » « less
-
Three diverse public universities(North Carolina State University, University of North Carolina Charlotte, and North Carolina Agricultural and Technical State University)have adapted and implemented an institutional change model that proposes five core elements for achieving cultural change in colleges and universities to increase the percentage of underrepresented minority (URM) faculty in STEM fields. Since URM doctoral students spend most of their time exposed to the culture of their academic department as they take classes, conduct research, and interact with departmental faculty, staff, and other graduate students, the climate they experience and the support they receive at the departmental level can have a major impact on their success. When interventions address students directly, once they graduate, there may be no lasting change in the department. However, when faculty attitudes and mentoring practices along with departmental processes and procedures change, the changes are likely to be more sustainable. Using institutional theory as the analytical lens, the purpose of this paper is to examine how one collaborative project implements a faculty-led institutional change model for diversifying the STEM professoriate. Each participating doctoral granting department has a volunteer faculty member interested in URM success designated as a Faculty Fellow. The Fellow receives programmatic support to increase their understanding of the issues facing URMs in doctoral programs and assessment support to identify the departmental practices that may be hindering URM student success. Together with their department head and director of graduate programs, they work with the departmental faculty to understand graduate student pathways, identify practices and policies that promote success, and diagnose trouble spots. Based on this study of the graduate student experience in their own department, the Fellow develops a departmental initiative designed to address departmental weaknesses. The faculty as a whole develop a departmental diversity plan to build these insights into departmental practices and procedures. This paper will explore the process of developing the departmental initiatives and diversity plans as well as report on some initiatives and plans developed. The benefits and drawbacks of the approach are discussed along with best practices identified to this pointmore » « less
An official website of the United States government

