skip to main content


Title: Temperature fluctuations in quasar accretion discs from spectroscopic monitoring data
ABSTRACT

NK22 proposed a new method to reconstruct the temperature perturbation map (as functions of time and disc radius) of active galactic nuclei (AGN) accretion discs using multiwavelength photometric light curves. We apply their technique to 100 quasars at z = 0.5–2 from the Sloan Digital Sky Survey Reverberation Mapping project, using multi-epoch spectroscopy that covers rest-frame UV-optical continuum emission from the quasar and probes days to months time-scales. Consistent with NK22 for low-redshift AGNs, we find that the dominant pattern of disc temperature perturbations is either slow inward/outward moving waves with typical amplitudes $\delta T/T_0\sim 10~{{\ \rm per \, cent}}$ traveling at ∼0.01–0.1c, with a typical radial frequency of ∼ 0.5 dex in log R, or incoherent perturbations. In nearly none of the cases do we find clear evidence for coherent, fast outgoing temperature perturbations at the speed of light, reminiscent of the lamppost model; but such lamppost signals may be present in some quasars for limited periods of the monitoring data. Using simulated data, we demonstrate that high-fidelity temperature perturbation maps can be recovered with high-quality monitoring spectroscopy, with limited impact from seasonal gaps in the data. On the other hand, reasonable temperature perturbation maps can be reconstructed with high-cadence photometric light curves from the Vera C Rubin Observatory Legacy Survey of Space and Time. Our findings, together with NK22, suggest that internal disc processes are the main driver for temperature fluctuations in AGN accretion discs over days to months time-scales.

 
more » « less
NSF-PAR ID:
10435958
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4521-4542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We introduce a new model for understanding AGN continuum variability. We start from a Shakura–Sunyaev thin accretion disc with a steady-state radial temperature profile T(R) and assume that the variable flux is due to axisymmetric temperature perturbations δT(R, t). After linearizing the equations, we fit UV–optical AGN light curves to determine δT(R, t) for a sample of seven AGNs. We see a diversity of |δT/T| ∼ 0.1 fluctuation patterns which are not dominated by outgoing waves travelling at the speed of light as expected for the ‘lamppost’ model used to interpret disc reverberation mapping studies. Rather, the most common pattern resembles slow (v ≪ c) ingoing waves. An explanation for our findings is that these ingoing waves trigger central temperature fluctuations that act as a lamppost, producing lower amplitude temperature fluctuations moving outwards at the speed of light. The light curves are dominated by the lamppost signal – even though the temperature fluctuations are dominated by other structures with similar variability time-scales – because the discs exponentially smooth the contributions from the slower moving (v ≪ c) fluctuations to the observed light curves. This leads to light curves that closely resemble the expectations for a lamppost model but with the slow variability time-scales of the ingoing waves. This also implies that longer time-scale variability signals will increasingly diverge from lamppost models because the smoothing of slower moving waves steadily decreases as their period or spatial wavelength increases. 
    more » « less
  2. ABSTRACT We study the optical light curves – primarily probing the variable emission from the accretion disc – of ∼900 extreme variability quasars (EVQs, with maximum flux variations more than 1 mag) over an observed-frame baseline of ∼16 yr using public data from the SDSS Stripe 82, PanSTARRS-1 and the Dark Energy Survey. We classify the multiyear long-term light curves of EVQs into three categories roughly in the order of decreasing smoothness: monotonic decreasing or increasing (3.7 per cent), single broad peak and dip (56.8 per cent), and more complex patterns (39.5 per cent). The rareness of monotonic cases suggests that the major mechanisms driving the extreme optical variability do not operate over time-scales much longer than a few years. Simulated light curves with a damped random walk model generally under-predict the first two categories with smoother long-term trends. Despite the different long-term behaviours of these EVQs, there is little dependence of the long-term trend on the physical properties of quasars, such as their luminosity, BH mass, and Eddington ratio. The large dynamic range of optical flux variability over multiyear time-scales of these EVQs allows us to explore the ensemble correlation between the short-term (≲6 months) variability and the seasonal-average flux across the decade-long baseline (the rms-mean flux relation). We find that unlike the results for X-ray variability studies, the linear short-term flux variations do not scale with the seasonal-average flux, indicating different mechanisms that drive the short-term flickering and long-term extreme variability of accretion disc emission. Finally, we present a sample of 16 EVQs, where the approximately bell-shaped large amplitude variation in the light curve can be reasonably well fit by a simple microlensing model. 
    more » « less
  3. ABSTRACT

    We study the optical gri photometric variability of a sample of 190 quasars within the SDSS Stripe 82 region that have long-term photometric coverage during ∼1998−2020 with SDSS, PanSTARRS-1, the Dark Energy Survey, and dedicated follow-up monitoring with Blanco 4m/DECam. With on average ∼200 nightly epochs per quasar per filter band, we improve the parameter constraints from a Damped Random Walk (DRW) model fit to the light curves over previous studies with 10–15 yr baselines and ≲ 100 epochs. We find that the average damping time-scale τDRW continues to rise with increased baseline, reaching a median value of ∼750 d (g band) in the rest frame of these quasars using the 20-yr light curves. Some quasars may have gradual, long-term trends in their light curves, suggesting that either the DRW fit requires very long baselines to converge, or that the underlying variability is more complex than a single DRW process for these quasars. Using a subset of quasars with better-constrained τDRW (less than 20 per cent of the baseline), we confirm a weak wavelength dependence of τDRW∝λ0.51 ± 0.20. We further quantify optical variability of these quasars over days to decades time-scales using structure function (SF) and power spectrum density (PSD) analyses. The SF and PSD measurements qualitatively confirm the measured (hundreds of days) damping time-scales from the DRW fits. However, the ensemble PSD is steeper than that of a DRW on time-scales less than ∼ a month for these luminous quasars, and this second break point correlates with the longer DRW damping time-scale.

     
    more » « less
  4. ABSTRACT

    Near IR spectroscopic reverberation of Active Galactic Nuclei (AGN) potentially allows the infrared (IR) broad line region (BLR) to be reverberated alongside the disc and dust continua, while the spectra can also reveal details of dust astro-chemistry. Here, we describe results of a short pilot study (17 near-IR spectra over a 183 d period) for Mrk 509. The spectra give a luminosity-weighted dust radius of 〈Rd,lum〉 = 186 ± 4 light-days for blackbody (large grain dust), consistent with previous (photometric) reverberation campaigns, whereas carbon and silicate dust give much larger radii. We develop a method of calibrating spectral data in objects where the narrow lines are extended beyond the slit width. We demonstrate this by showing our resultant photometric band light curves are consistent with previous results, with a hot dust lag at >40 d in the K band, clearly different from the accretion disc response at <20 d in the z band. We place this limit of 40 d by demonstrating clearly that the modest variability that we do detect in the H and K band does not reverberate on time-scales of less than 40 d. We also extract the Pa β line light curve, and find a lag which is consistent with the optical BLR H β line of ∼70–90 d. This is important as direct imaging of the near-IR BLR is now possible in a few objects, so we need to understand its relation to the better studied optical BLR.

     
    more » « less
  5. Abstract We examine the light curves of two quasars, motivated by recent suggestions that a supermassive black hole binary (SMBHB) can exhibit sharp lensing spikes. We model the variability of each light curve as due to a combination of two relativistic effects: the orbital relativistic Doppler boost and gravitational binary self-lensing. In order to model each system we extend previous Doppler plus self-lensing models to include eccentricity. The first quasar is identified in optical data as a binary candidate with a 20-yr period (Ark 120), and shows a prominent spike. For this source, we rule out the lensing hypothesis and disfavor the Doppler-boost hypothesis due to discrepancies in the measured vs. recovered values of the binary mass and optical spectral slope. The second source, which we nickname Spikey, is the rare case of an active galactic nucleus (AGN) identified in Kepler’s high-quality, high-cadence photometric data. For this source, we find a model, consisting of a combination of Doppler modulation and a narrow symmetric lensing spike, consistent with an eccentric SMBHB with mass Mtot = 3 × 107M⊙, rest-frame orbital period T = 418 days, eccentricity e = 0.5, and seen at an inclination 8○ from edge-on. This interpretation can be tested by monitoring Spikey for periodic behavior and recurring flares in the next few years. In preparation for such monitoring we present the first X-ray observations of this object taken by the Neil Gehrels Swift observatory. 
    more » « less