skip to main content

Title: Characterization of optical light curves of extreme variability quasars over a ∼16-yr baseline
ABSTRACT We study the optical light curves – primarily probing the variable emission from the accretion disc – of ∼900 extreme variability quasars (EVQs, with maximum flux variations more than 1 mag) over an observed-frame baseline of ∼16 yr using public data from the SDSS Stripe 82, PanSTARRS-1 and the Dark Energy Survey. We classify the multiyear long-term light curves of EVQs into three categories roughly in the order of decreasing smoothness: monotonic decreasing or increasing (3.7 per cent), single broad peak and dip (56.8 per cent), and more complex patterns (39.5 per cent). The rareness of monotonic cases suggests that the major mechanisms driving the extreme optical variability do not operate over time-scales much longer than a few years. Simulated light curves with a damped random walk model generally under-predict the first two categories with smoother long-term trends. Despite the different long-term behaviours of these EVQs, there is little dependence of the long-term trend on the physical properties of quasars, such as their luminosity, BH mass, and Eddington ratio. The large dynamic range of optical flux variability over multiyear time-scales of these EVQs allows us to explore the ensemble correlation between the short-term (≲6 months) variability and the seasonal-average flux across the decade-long baseline (the rms-mean more » flux relation). We find that unlike the results for X-ray variability studies, the linear short-term flux variations do not scale with the seasonal-average flux, indicating different mechanisms that drive the short-term flickering and long-term extreme variability of accretion disc emission. Finally, we present a sample of 16 EVQs, where the approximately bell-shaped large amplitude variation in the light curve can be reasonably well fit by a simple microlensing model. « less
Authors:
; ;
Award ID(s):
1715579
Publication Date:
NSF-PAR ID:
10161999
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
494
Issue:
3
Page Range or eLocation-ID:
3686 to 3698
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The variability of quasars across multiple wavelengths is a useful probe of physical conditions in active galactic nuclei. In particular, variable accretion rates, instabilities, and reverberation effects in the accretion disc of a supermassive black hole are expected to produce correlated flux variations in ultraviolet (UV) and optical bands. Recent work has further argued that binary quasars should exhibit strongly correlated UV and optical periodicities. Strong UV–optical correlations have indeed been established in small samples of (N ≲ 30) quasars with well-sampled light curves, and have extended the ‘bluer-when-brighter’ trend previously found within the optical bands. Here, we furthermore »test the nature of quasar variability by examining the observed-frame UV–optical correlations among bright quasars extracted from the Half Million Quasars (HMQ) catalogue. We identified a large sample of 1315 quasars in HMQ with overlapping UV and optical light curves from the Galaxy Evolution Explorer and the Catalina Real-time Transient Survey, respectively. We find that strong correlations exist in this much larger sample, but we rule out, at ∼95 per cent confidence, the simple hypothesis that the intrinsic UV and optical variations of all quasars are fully correlated. Our results therefore imply the existence of physical mechanism(s) that can generate uncorrelated optical and UV flux variations.« less
  2. ABSTRACT We study the optical gri photometric variability of a sample of 190 quasars within the SDSS Stripe 82 region that have long-term photometric coverage during ∼1998−2020 with SDSS, PanSTARRS-1, the Dark Energy Survey, and dedicated follow-up monitoring with Blanco 4m/DECam. With on average ∼200 nightly epochs per quasar per filter band, we improve the parameter constraints from a Damped Random Walk (DRW) model fit to the light curves over previous studies with 10–15 yr baselines and ≲ 100 epochs. We find that the average damping time-scale τDRW continues to rise with increased baseline, reaching a median value of ∼750 d (gmore »band) in the rest frame of these quasars using the 20-yr light curves. Some quasars may have gradual, long-term trends in their light curves, suggesting that either the DRW fit requires very long baselines to converge, or that the underlying variability is more complex than a single DRW process for these quasars. Using a subset of quasars with better-constrained τDRW (less than 20 per cent of the baseline), we confirm a weak wavelength dependence of τDRW∝λ0.51 ± 0.20. We further quantify optical variability of these quasars over days to decades time-scales using structure function (SF) and power spectrum density (PSD) analyses. The SF and PSD measurements qualitatively confirm the measured (hundreds of days) damping time-scales from the DRW fits. However, the ensemble PSD is steeper than that of a DRW on time-scales less than ∼ a month for these luminous quasars, and this second break point correlates with the longer DRW damping time-scale.« less
  3. ABSTRACT

    We report on daily monitoring of the Seyfert galaxy ngc 7469, around 95 and 143 GHz, with the iram (Institut de Radioastronomie Millimetrique) 30- m radio telescope, and with the Swift X-ray and UV/optical telescopes, over an overlapping period of 45 d. The source was observed on 36 d with iram, and the flux density in both mm bands was on average ∼10 mJy, but varied by $\pm 50{{\ \rm per\ cent}}$, and by up to a factor of 2 between days. The present iram variability parameters are consistent with earlier monitoring, which had only 18 data points. The X-ray light curve of ngc 7469 over themore »same period spans a factor of 5 in flux with small uncertainties. Similar variability in the mm band and in the X-rays lends support to the notion of both sources originating in the same physical component of the active galactic nucleus (AGN), likely the accretion disc corona. Simultaneous monitoring in eight UV/optical bands shows much less variability than the mm and X-rays, implying this light originates from a different AGN component, likely the accretion disc itself. We use a tentative 14-d lag of the X-ray light curve with respect to the 95 GHz light curve to speculate on coronal implications. More precise mm-band measurements of a sample of X-ray-variable AGN are needed, preferably also on time-scales of less than a day where X-rays vary dramatically, in order to properly test the physical connection between the two bands.

    « less
  4. ABSTRACT Since the discovery of z ∼ 6 quasars two decades ago, studies of their Ly α-transparent proximity zones have largely focused on their utility as a probe of cosmic reionization. But even when in a highly ionized intergalactic medium, these zones provide a rich laboratory for determining the time-scales that govern quasar activity and the concomitant growth of their supermassive black holes. In this work, we use a suite of 1D radiative transfer simulations of quasar proximity zones to explore their time-dependent behaviour for activity time-scales from ∼103 to 108 yr. The sizes of the simulated proximity zones, as quantified by themore »distance at which the smoothed Ly α transmission drops below 10 per cent (denoted Rp), are in excellent agreement with observations, with the exception of a handful of particularly small zones that have been attributed to extremely short ≲104 lifetimes. We develop a physically motivated semi-analytic model of proximity zones which captures the bulk of their equilibrium and non-equilibrium behaviour, and use this model to investigate how quasar variability on ≲105 yr time-scales is imprinted on the distribution of observed proximity zone sizes. We show that large variations in the ionizing luminosity of quasars on time-scales of ≲104 yr are disfavoured based on the good agreement between the observed distribution of Rp and our model prediction based on ‘lightbulb’ (i.e. steady constant emission) light curves.« less
  5. ABSTRACT Studies of T Tauri discs inform planet formation theory; observations of variability due to occultation by circumstellar dust are a useful probe of unresolved, planet-forming inner discs, especially around faint M dwarf stars. We report observations of 2M0632, an M dwarf member of the Carina young moving group that was observed by Transiting Exoplanet Survey Satellite over two 1-yr intervals. The combined light curve contains >300 dimming events, each lasting a few hours, and as deep as 40 per cent (0.55 magnitudes). These stochastic events are correlated with a distinct, stable 1.86-d periodic signal that could be stellar rotation. Concurrent ground-based,more »multiband photometry show reddening consistent with interstellar medium-like dust. The star’s excess emission in the infrared and emission lines in optical and infrared spectra reveal a T Tauri-like accretion disc around the star. We confirm membership of 2M0632 in the Carina group by a Bayesian analysis of its Galactic space motion and position. We combine stellar evolution models with Gaia photometry and constraints on Teff, luminosity, and the absence of detectable lithium in the photosphere to constrain the age of the group and 2M0632 to 40–60 Myr, consistent with earlier estimates. 2M0632 joins a handful of long-lived discs which challenge the canon that disc lifetimes are ≲10 Myr. All known examples surround M dwarfs, suggesting that lower X-ray/ultraviolet irradiation and slower photoevaporation by these stars can dramatically affect disc evolution. The multiplanet systems spawned by long-lived discs probably experienced significant orbital damping and migration into close-in, resonant orbits, and perhaps represented by the TRAPPIST-1 system.« less