skip to main content


Title: Effective Modulation of Inflammation and Oxidative Stress for Enhanced Regeneration of Intervertebral Discs Using 3D Porous Hybrid Protein Nanoscaffold
Abstract

Degeneration of fibrocartilaginous tissues is often associated with complex pro‐inflammatory factors. These include reactive oxygen species (ROS), cell‐free nucleic acids (cf‐NAs), and epigenetic changes in immune cells. To effectively control this complex inflammatory signaling, it developed an all‐in‐one nanoscaffold‐based 3D porous hybrid protein (3D‐PHP) self‐therapeutic strategy for treating intervertebral disc (IVD) degeneration. The 3D‐PHP nanoscaffold is synthesized by introducing a novel nanomaterial‐templated protein assembly (NTPA) strategy. 3D‐PHP nanoscaffolds that avoid covalent modification of proteins demonstrate inflammatory stimuli‐responsive drug release, disc‐mimetic stiffness, and excellent biodegradability. Enzyme‐like 2D nanosheets incorporated into nanoscaffolds further enabled robust scavenging of ROS and cf‐NAs, reducing inflammation and enhancing the survival of disc cells under inflammatory stress in vitro. Implantation of 3D‐PHP nanoscaffolds loaded with bromodomain extraterminal inhibitor (BETi) into a rat nucleotomy disc injury model effectively suppressed inflammation in vivo, thus promoting restoration of the extracellular matrix (ECM). The resulting regeneration of disc tissue facilitated long‐term pain reduction. Therefore, self‐therapeutic and epigenetic modulator‐encapsulated hybrid protein nanoscaffold shows great promise as a novel approach to restore dysregulated inflammatory signaling and treat degenerative fibrocartilaginous diseases, including disc injuries, providing hope and relief to patients worldwide.

 
more » « less
NSF-PAR ID:
10435979
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
41
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Type-II diabetes (T2D) patients affected by underlying hyperglycemic (high glucose/blood sugar) conditions often suffer from cardiac atrophy, resulting in tissue mass reduction and debilitating cardiac health. To understand pathophysiological mechanisms during progression of cardiac atrophy, a 3D bioprinted organoid platform was developed from a mixture of hydrogels containing human cardiac cells, including cardiomyocytes (CM), fibroblasts (CF) and endothelial cells (EC), to mimic the functionality of the in-vivo tissue. The organoids were cultured using normoglycemic- or hyperglycemic-conditions. The expression of essential biomarkers in these organoids, for myocardin (Myocd), troponin-I (TRP-I), fibroblast protein-1 (FSP-1) and endothelin-1 (ET-1) was confirmed. To assess the physiological cellular connections during hyperglycemia, the presence of Connexin-43 (CX-43) was assessed in the presence of a CX-43 blocker, gap26. Epigenomic tools were used to simultaneously interrogate histone-modifications by histone 3 lysine 9 mono-methylation (H3K9me1) along with the co-regulation of inflammatory mediators, such as the high mobility group box 1 (HMGB1) and toll like receptor 4 (TLR4) in the cardiac organoids cultured using normal versus hyperglycemic conditions. Organoids exposed to high glucose showed an increased expression of H3K9me1 as well as inflammatory mediators HMGB1 and TLR4. Hyperglycemia also exhibited alterations in expression of Myocd and FSP-1 in the organoids, compared to normoglycemic conditions. Treatment with gap26 affected the CX-43 expression significantly, in organoids cultured under hyperglycemia suggesting that high glucose conditions associated with prolonged diabetes may lead to compromised CM-CF coupling, essential for maintenance of cardiac functionality. Increased levels of H3K9me1 suggest decreased expression of Myocd, which may lead to CM degeneration. Epigenetic modifications including alterations in histone methylation in regulation of the myocardial genes and gap junction proteins under hyperglycemic conditions, may lead to cardiac atrophy. We expect to establish an actual T2D patient iPSC cell derived cardiac platform, to offer new therapeutic opportunities within the field. 
    more » « less
  2. Abstract

    Central nervous system (CNS) injuries are often debilitating, and most currently have no cure. This is due to the formation of a neuroinhibitory microenvironment at injury sites, which includes neuroinflammatory signaling and non‐permissive extracellular matrix (ECM) components. To address this challenge, a viscous interfacial self‐assembly approach, to generate a bioinspired hybrid 3D porous nanoscaffold platform for delivering anti‐inflammatory molecules and establish a favorable 3D‐ECM environment for the effective suppression of the neuroinhibitory microenvironment, is developed. By tailoring the structural and biochemical properties of the 3D porous nanoscaffold, enhanced axonal growth from the dual‐targeting therapeutic strategy in a human induced pluripotent stem cell (hiPSC)‐based in vitro model of neuroinflammation is demonstrated. Moreover, nanoscaffold‐based approaches promote significant axonal growth and functional recovery in vivo in a spinal cord injury model through a unique mechanism of anti‐inflammation‐based fibrotic scar reduction. Given the critical role of neuroinflammation and ECM microenvironments in neuroinhibitory signaling, the developed nanobiomaterial‐based therapeutic intervention may pave a new road for treating CNS injuries.

     
    more » « less
  3. Osteoarthritis (OA), a chronic and degenerative joint disease, remains a challenge in treatment due to the lack of disease-modifying therapies. As a promising therapeutic agent, adipose-derived stem cells (ADSCs) have an effective anti-inflammatory and chondroprotective paracrine effect that can be enhanced by genetic modification. Unfortunately, direct cell delivery without matrix support often results in poor viability of therapeutic cells. Herein, a hydrogel implant approach that enabled intra-articular delivery of gene-engineered ADSCs was developed for improved therapeutic outcomes in a surgically induced rat OA model. An injectable extracellular matrix (ECM)-mimicking hydrogel was prepared as the carrier for cell delivery, providing a favorable microenvironment for ADSC spreading and proliferation. The ECM-mimicking hydrogel could reduce cell death during and post injection. Additionally, ADSCs were genetically modified to overexpress transforming growth factor-β1 (TGF-β1), one of the paracrine factors that exert an anti-inflammatory and pro-anabolic effect. The gene-engineered ADSCs overexpressing TGF-β1 (T-ADSCs) had an enhanced paracrine effect on OA-like chondrocytes, which effectively decreased the expression of tumor necrosis factor-alpha and increased the expression of collagen II and aggrecan. In a surgically induced rat OA model, intra-articular injection of the T-ADSC-loaded hydrogel markedly reduced cartilage degeneration, joint inflammation, and the loss of the subchondral bone. Taken together, this study provides a potential biomaterial strategy for enhanced OA treatment by delivering the gene-engineered ADSCs within an ECM-mimicking hydrogel. 
    more » « less
  4. Diabetes is a major risk factor for cardiovascular diseases, especially cardiomyopathy, a condition in which the smooth muscles of the heart become thick and rigid, affecting the functioning of cardiomyocytes, the contractile cells of the heart. Uncontrolled elevated glucose levels over time can result in oxidative stress, which could lead to inflammation and altered epigenetic mechanisms. In the current study, we investigated whether hyperglycemia can modify cardiac function by directly affecting these changes in cardiomyocytes. To evaluate the adverse effect of high glucose, we measured the levels of gap junction protein, connexin 43, which is responsible for modulating cardiac electric activities and Troponin I, a part of the troponin complex in the heart muscles, commonly used as cardiac markers of ischemic heart disease. AC16 human cardiomyocyte cells were used in this study. Under hyperglycemic conditions, these cells demonstrated altered levels of connexin 43 and Troponin-I after 24 h of exposure. We also examined hyperglycemia induced changes in epigenetic markers: H3K9me1, Sirtuin-1 (SIRT1), and histone deacetylase (HDAC)-2 as well as in inflammatory and stress-related mediators, such as heat shock protein (HSP)-60, receptor for advanced glycation end products (RAGE), toll-like receptor (TLR)-4, high mobility group box (HMGB)-1 and CXC chemokine receptor (CXCR)-4. Cardiomyocytes exposed to 25mM glucose resulted in the downregulation of HSP60 and SIRT1 after 48 h. We further examined that hyperglycemia mediated the decrease in the gap junction protein CX43, as well as CXC chemokine receptor CXCR4 which may affect the physiological functions of the cardiomyocytes when exposed to high glucose for 24 and 48 h. Upregulated expression of DNA-binding nuclear protein HMGB1, along with changes in histone methylation marker H3K9me1 have demonstrated hyperglycemia-induced damage to cardiomyocyte at 24 h of exposure. Our study established that 24 to 48 h of hyperglycemic exposure could stimulate stress-mediated inflammatory mediators in cardiomyocytes in vitro. These stress-related changes in hyperglycemia-induced cardiomyocytes may further initiate an increase in injury markers which eventually could alter the epigenetic processes. Therefore, epigenetic and inflammatory mechanisms in conjunction with alterations in a downstream signaling pathway could have a direct effect on the functionality of the cardiomyocytes exposed to high glucose during short and long-term exposures. 
    more » « less
  5. Abstract

    While it is well known that mechanical signals can either promote or disrupt intervertebral disc (IVD) homeostasis, the molecular mechanisms for transducing mechanical stimuli are not fully understood. The transient receptor potential vanilloid 4 (TRPV4) ion channel activated in isolated IVD cells initiates extracellular matrix (ECM) gene expression, while TRPV4 ablation reduces cytokine production in response to circumferential stretching. However, the role of TRPV4 on ECM maintenance during tissue‐level mechanical loading remains unknown. Using an organ culture model, we modulated TRPV4 function over both short‐ (hours) and long‐term (days) and evaluated the IVDs' response. Activating TRPV4 with the agonist GSK101 resulted in a Ca2+flux propagating across the cells within the IVD. Nuclear factor (NF)‐κB signaling in the IVD peaked at 6 h following TRPV4 activation that subsequently resulted in higher interleukin (IL)‐6 production at 7 days. These cellular responses were concomitant with the accumulation of glycosaminoglycans and increased hydration in the nucleus pulposus that culminated in higher stiffness of the IVD. Sustained compressive loading of the IVD resulted in elevated NF‐κB activity, IL‐6 and vascular endothelial growth factor A (VEGFA) production, and degenerative changes to the ECM. TRPV4 inhibition using GSK205 during loading mitigated the changes in inflammatory cytokines, protected against IVD degeneration, but could not prevent ECM disorganization due to mechanical damage in the annulus fibrosus. These results indicate TRPV4 plays an important role in both short‐ and long‐term adaptations of the IVD to mechanical loading. The modulation of TRPV4 may be a possible therapeutic for preventing load‐induced IVD degeneration.

     
    more » « less