skip to main content


Title: Modulation of TRPV4 protects against degeneration induced by sustained loading and promotes matrix synthesis in the intervertebral disc
Abstract

While it is well known that mechanical signals can either promote or disrupt intervertebral disc (IVD) homeostasis, the molecular mechanisms for transducing mechanical stimuli are not fully understood. The transient receptor potential vanilloid 4 (TRPV4) ion channel activated in isolated IVD cells initiates extracellular matrix (ECM) gene expression, while TRPV4 ablation reduces cytokine production in response to circumferential stretching. However, the role of TRPV4 on ECM maintenance during tissue‐level mechanical loading remains unknown. Using an organ culture model, we modulated TRPV4 function over both short‐ (hours) and long‐term (days) and evaluated the IVDs' response. Activating TRPV4 with the agonist GSK101 resulted in a Ca2+flux propagating across the cells within the IVD. Nuclear factor (NF)‐κB signaling in the IVD peaked at 6 h following TRPV4 activation that subsequently resulted in higher interleukin (IL)‐6 production at 7 days. These cellular responses were concomitant with the accumulation of glycosaminoglycans and increased hydration in the nucleus pulposus that culminated in higher stiffness of the IVD. Sustained compressive loading of the IVD resulted in elevated NF‐κB activity, IL‐6 and vascular endothelial growth factor A (VEGFA) production, and degenerative changes to the ECM. TRPV4 inhibition using GSK205 during loading mitigated the changes in inflammatory cytokines, protected against IVD degeneration, but could not prevent ECM disorganization due to mechanical damage in the annulus fibrosus. These results indicate TRPV4 plays an important role in both short‐ and long‐term adaptations of the IVD to mechanical loading. The modulation of TRPV4 may be a possible therapeutic for preventing load‐induced IVD degeneration.

 
more » « less
NSF-PAR ID:
10416144
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1096
Date Published:
Journal Name:
The FASEB Journal
Volume:
37
Issue:
2
ISSN:
0892-6638
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Surfactant protein D (SP-D) is a C-type collectin and plays an important role in innate immunity and homeostasis in the lung. This study studied SP-D role in the nontypeable Haemophilus influenzae (NTHi)-induced otitis media (OM) mouse model. Wild-type C57BL/6 (WT) and SP-D knockout (KO) mice were used in this study. Mice were injected in the middle ear (ME) with 5 μL of NTHi bacterial solution (3.5 × 105 CFU/ear) or with the same volume of sterile saline (control). Mice were sacrificed at 3 time points, days 1, 3, and 7, after treatment. We found SP-D expression in the Eustachian tube (ET) and ME mucosa of WT mice but not in SP-D KO mice. After infection, SP-D KO mice showed more intense inflammatory changes evidenced by the increased mucosal thickness and inflammatory cell infiltration in the ME and ET compared to WT mice (p < 0.05). Increased bacterial colony-forming units and cytokine (IL-6 and IL-1β) levels in the ear washing fluid of infected SP-D KO mice were compared to infected WT mice. Molecular analysis revealed higher levels of NF-κB and NLRP3 activation in infected SP-D KO compared to WT mice (p < 0.05). In vitro studies demonstrated that SP-D significantly induced NTHi bacterial aggregation and enhanced bacterial phagocytosis by macrophages (p < 0.05). Furthermore, human ME epithelial cells showed a dose-dependent increased expression of NLRP3 and SP-D proteins after LPS treatment. We conclude that SP-D plays a critical role in innate immunity and disease resolution through enhancing host defense and regulating inflammatory NF-κB and NLRP3 activation in experimental OM mice. 
    more » « less
  2. Mechanical loading of the intervertebral disc (IVD) initiates cell‐mediated remodeling events that contribute to disc degeneration. Cells of the IVD, nucleus pulposus (NP) and anulus fibrosus (AF), will exhibit various responses to different mechanical stimuli which appear to be highly dependent on loading type, magnitude, duration, and anatomic zone of cell origin. Cells of the NP, the innermost region of the disc, exhibit an anabolic response to low‐moderate magnitudes of static compression, osmotic pressure, or hydrostatic pressure, while higher magnitudes promote a catabolic response marked by increased protease expression and activity. Cells of the outer AF are responsive to physical forces in a manner that depends on frequency and magnitude, as are cells of the NP, though they experience different forces, deformations, pressure, and osmotic pressure in vivo. Much remains to be understood of the mechanotransduction pathways that regulate IVD cell responses to loading, including responses to specific stimuli and also differences among cell types. There is evidence that cytoskeletal remodeling and receptor‐mediated signaling are important mechanotransduction events that can regulate downstream effects like gene expression and posttranslational biosynthesis, all of which may influence phenotype and bioactivity. These and other mechanotransduction events will be regulated by known and to‐be‐discovered cell‐matrix and cell‐cell interactions, and depend on composition of extracellular matrix ligands for cell interaction, matrix stiffness, and the phenotype of the cells themselves. Here, we present a review of the current knowledge of the role of mechanical stimuli and the impact upon the cellular response to loading and changes that occur with aging and degeneration of the IVD.

     
    more » « less
  3. Abstract

    Therapeutic Low-intensity Pulsed Ultrasound (LIPUS) has been applied clinically for bone fracture healing and has been shown to stimulate extracellular matrix (ECM) metabolism in numerous soft tissues including intervertebral disc (IVD). In-vitro LIPUS testing systems have been developed and typically include polystyrene cell culture plates (CCP) placed directly on top of the ultrasound transducer in the acoustic near-field (NF). This configuration introduces several undesirable acoustic artifacts, making the establishment of dose-response relationships difficult, and is not relevant for targeting deep tissues such as the IVD, which may require far-field (FF) exposure from low frequency sources. The objective of this study was to design and validate an in-vitro LIPUS system for stimulating ECM synthesis in IVD-cells while mimicking attributes of a deep delivery system by delivering uniform, FF acoustic energy while minimizing reflections and standing waves within target wells, and unwanted temperature elevation within target samples. Acoustic field simulations and hydrophone measurements demonstrated that by directing LIPUS energy at 0.5, 1.0, or 1.5 MHz operating frequency, with an acoustic standoff in the FF (125–350 mm), at 6-well CCP targets including an alginate ring spacer, uniform intensity distributions can be delivered. A custom FF LIPUS system was fabricated and demonstrated reduced acoustic intensity field heterogeneity within CCP-wells by up to 93% compared to common NF configurations. When bovine IVD cells were exposed to LIPUS (1.5 MHz, 200 μs pulse, 1 kHz pulse frequency, and ISPTA = 120 mW cm−2) using the FF system, sample heating was minimal (+0.81 °C) and collagen content was increased by 2.6-fold compared to the control and was equivalent to BMP-7 growth factor treatment. The results of this study demonstrate that FF LIPUS exposure increases collagen content in IVD cells and suggest that LIPUS is a potential noninvasive therapeutic for stimulating repair of tissues deep within the body such as the IVD.

     
    more » « less
  4. Structured Abstract Objectives

    To investigate the ploughing mechanism associated with tractional force formation on the temporomandibular joint (TMJ) disc surface.

    Setting and Sample Population

    Ten leftTMJdiscs were harvested from 6‐ to 8‐month‐old male Yorkshire pigs.

    Materials and Methods

    Confined compression tests characterized mechanicalTMJdisc properties, which were incorporated into a biphasic finite element model (FEM). TheFEMwas established to investigate load carriage within the extracellular matrix (ECM) and the ploughing mechanism during tractional force formation by simulating previous in vitro plough experiments.

    Results

    Biphasic mechanical properties were determined in fiveTMJdisc regions (average±standard deviation for aggregate modulus: 0.077±0.040MPa; hydraulic permeability: 0.88±0.37×10−3mm4/Ns).FEsimulation results demonstrated that interstitial fluid pressurization is a dominant loading support mechanism in theTMJdisc. Increased contact load and duration led to increased solidECMstrain and stress within, and increased ploughing force on the surface of the disc.

    Conclusion

    Sustained mechanical loading may play a role in load carriage within theECMand ploughing force formation during stress‐field translation at the condyle–disc interface. This study further elucidated the mechanism of ploughing on tractional force formation and provided a baseline for future analysis ofTMJmechanics, cartilage fatigue and earlyTMJdegeneration.

     
    more » « less
  5. Abstract

    Preeclampsia (PE) is a major cause of perinatal and maternal mortality and morbidity, which affects 2% to 8% of pregnancies in the world. The aberrant maternal inflammation and angiogenic imbalance have been demonstrated to contribute to the pathogenesis of PE. This research aimed to investigate the effect of Astragaloside IV (AsIV) in the treatment of PE and the underlying mechanisms. A rat PE‐like model was established by tail vein injection of lipopolysaccharide (LPS) and different doses of AsIV (40 and 80 mg/kg) were treated at the same time. Systolic blood pressure, total urine protein and urine volume were observed. Serum and placenta inflammatory cytokines were measured by ELISA kit. The mRNA and protein expression of relative genes were analyzed by qRT‐PCR and Western blotting. In PE‐like rats, there were obvious increases in systolic blood pressure, total urine protein and urine volume, which were obviously alleviated by treatment with AsIV. Serum levels of interleukin (IL)‐1β, tumor necrosis factor alpha (TNF‐α), IL‐6 and IL‐18, as well as IL‐4, IL‐10, PIGF, VEGF and sFlt‐1, were all reversed by treatment with AsIV. Meanwhile, AsIV treatment improved abnormal pregnancy outcomes, such as low litter size and low fetal weight. In addition, AsIV treatment downregulated the mRNA expression of inflammatory gene IL‐1β and IL‐6 in PE rats model, and AsIV treatment inhibited the activation of TLR‐4, NF‐κB, and sFlt‐1 in the placenta of PE rats. Our findings indicated the first evidence that AsIV alleviated PE‐like signs, and this improvement effect is possibly through inhibition of inflammation response via the TLR4/NF‐κB signaling pathway.

     
    more » « less