skip to main content


Title: Stable reconstruction of simple Riemannian manifolds from unknown interior sources
Abstract

Consider the geometric inverse problem: there is a set of delta-sources in spacetime that emit waves travelling at unit speed. If we know all the arrival times at the boundary cylinder of the spacetime, can we reconstruct the space, a Riemannian manifold with boundary? With a finite set of sources we can only hope to get an approximate reconstruction, and we indeed provide a discrete metric approximation to the manifold with explicit data-driven error bounds when the manifold is simple. This is the geometrization of a seismological inverse problem where we measure the arrival times on the surface of waves from an unknown number of unknown interior microseismic events at unknown times. The closeness of two metric spaces with a marked boundary is measured by a labeled Gromov–Hausdorff distance. If measurements are done for infinite time and spatially dense sources, our construction produces the true Riemannian manifold and the finite-time approximations converge to it in the metric sense

 
more » « less
NSF-PAR ID:
10435993
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Inverse Problems
Volume:
39
Issue:
9
ISSN:
0266-5611
Page Range / eLocation ID:
Article No. 095002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given only a finite collection of points sampled from a Riemannian manifold embedded in a Euclidean space, in this paper we propose a new method to numerically solve elliptic and parabolic partial differential equations (PDEs) supplemented with boundary conditions. Since the construction of triangulations on unknown manifolds can be both difficult and expensive, both in terms of computational and data requirements, our goal is to solve these problems without a triangulation. Instead, we rely only on using the sample points to define quadrature formulas on the unknown manifold. Our main tool is the diffusion maps algorithm. We re-analyze this well-known method in a variational sense for manifolds with boundary. Our main result is that the variational diffusion maps graph Laplacian is a consistent estimator of the Dirichlet energy on the manifold. This improves upon previous results and provides a rigorous justification of the well-known relationship between diffusion maps and the Neumann eigenvalue problem. Moreover, using semigeodesic coordinates we derive the first uniform asymptotic expansion of the diffusion maps kernel integral operator for manifolds with boundary. This expansion relies on a novel lemma which relates the extrinsic Euclidean distance to the coordinate norm in a normal collar of the boundary. We then use a recently developed method of estimating the distance to boundary function (notice that the boundary location is assumed to be unknown) to construct a consistent estimator for boundary integrals. Finally, by combining these various estimators, we illustrate how to impose Dirichlet and Neumann conditions for some common PDEs based on the Laplacian. Several numerical examples illustrate our theoretical findings. 
    more » « less
  2. Abstract

    For a given finite subsetSof a compact Riemannian manifold (M,g) whose Schouten curvature tensor belongs to a given cone, we establish a necessary and sufficient condition for the existence and uniqueness of a conformal metric onM\Ssuch that each point ofScorresponds to an asymptotically flat end and that the Schouten tensor of the conformal metric belongs to the boundary of the given cone. As a by‐product, we define a purely local notion of Ricci lower bounds for continuous metrics that are conformal to smooth metrics and prove a corresponding volume comparison theorem. © 2022 The Authors.Communications on Pure and Applied Mathematicspublished by Wiley Periodicals LLC.

     
    more » « less
  3. Abstract

    Seismic phase association is a fundamental task in seismology that pertains to linking together phase detections on different sensors that originate from a common earthquake. It is widely employed to detect earthquakes on permanent and temporary seismic networks and underlies most seismicity catalogs produced around the world. This task can be challenging because the number of sources is unknown, events frequently overlap in time, or can occur simultaneously in different parts of a network. We present PhaseLink, a framework based on recent advances in deep learning for grid‐free earthquake phase association. Our approach learns to link phases together that share a common origin and is trained entirely on millions of synthetic sequences ofPandSwave arrival times generated using a 1‐D velocity model. Our approach is simple to implement for any tectonic regime, suitable for real‐time processing, and can naturally incorporate errors in arrival time picks. Rather than tuning a set of ad hoc hyperparameters to improve performance, PhaseLink can be improved by simply adding examples of problematic cases to the training data set. We demonstrate the state‐of‐the‐art performance of PhaseLink on a challenging sequence from southern California and synthesized sequences from Japan designed to test the point at which the method fails. For the examined data sets, PhaseLink can precisely associate phases to events that occur only ∼12 s apart in origin time. This approach is expected to improve the resolution of seismicity catalogs, add stability to real‐time seismic monitoring, and streamline automated processing of large seismic data sets.

     
    more » « less
  4. null (Ed.)
    Abstract We consider an inverse boundary value problem for a semilinear wave equation on a time-dependent Lorentzian manifold with time-like boundary. The time-dependent coefficients of the nonlinear terms can be recovered in the interior from the knowledge of the Neumann-to-Dirichlet map. Either distorted plane waves or Gaussian beams can be used to derive uniqueness. 
    more » « less
  5. Abstract

    We demonstrate that a model with extra dimensions formulated in Csaki et al. (Phys Rev D 62:045015, 2000), which fatefully reproduces Friedmann–Robertson–Walker (FRW) equations on the brane, allows for an apparent superluminal propagation of massless signals. Namely, a massive brane curves the spacetime and affects the trajectory of a signal in a way that allows a signal sent from the brane through the bulk to arrive (upon returning) to a distant point on the brane faster than the light can propagate along the brane. In particular, the signal sent along the brane suffers a greater gravitational time delay than the bulk signal due to the presence of matter on the brane. While the bulk signal never moves with the speed greater than the speed of light in its own locality, this effect still enables one to send signals faster than light from the brane observer’s perspective. For example, this effect might be used to resolve the cosmological horizon problem. In addition, one of the striking observational signatures would be arrival of the same gravitational wave signal at two different times, where the first signals arrives before its electromagnetic counterpart. We used GW170104 gravitational wave event to impose a strong limit on the model with extra dimensions in question.

     
    more » « less