skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stable reconstruction of simple Riemannian manifolds from unknown interior sources
Abstract Consider the geometric inverse problem: there is a set of delta-sources in spacetime that emit waves travelling at unit speed. If we know all the arrival times at the boundary cylinder of the spacetime, can we reconstruct the space, a Riemannian manifold with boundary? With a finite set of sources we can only hope to get an approximate reconstruction, and we indeed provide a discrete metric approximation to the manifold with explicit data-driven error bounds when the manifold is simple. This is the geometrization of a seismological inverse problem where we measure the arrival times on the surface of waves from an unknown number of unknown interior microseismic events at unknown times. The closeness of two metric spaces with a marked boundary is measured by a labeled Gromov–Hausdorff distance. If measurements are done for infinite time and spatially dense sources, our construction produces the true Riemannian manifold and the finite-time approximations converge to it in the metric sense  more » « less
Award ID(s):
2108175
PAR ID:
10435993
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Inverse Problems
Volume:
39
Issue:
9
ISSN:
0266-5611
Page Range / eLocation ID:
Article No. 095002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A Riemannian cone (C,gC) is by definition a warped product C=R+×L with metric gC=dr2⊕r2gL, where (L,gL) is a compact Riemannian manifold without boundary. We say that C is a Calabi-Yau cone if gC is a Ricci-flat Kähler metric and if C admits a gC-parallel holomorphic volume form; this is equivalent to the cross-section (L,gL) being a Sasaki-Einstein manifold. In this paper, we give a complete classification of all smooth complete Calabi-Yau manifolds asymptotic to some given Calabi-Yau cone at a polynomial rate at infinity. As a special case, this includes a proof of Kronheimer's classification of ALE hyper-Kähler 4-manifolds without twistor theory. 
    more » « less
  2. In this paper, we formulate a geometric nonlinear theory of the mechanics of accreting–ablating bodies. This is a generalization of the theory of accretion mechanics of Sozio & Yavari (Sozio & Yavari 2019J. Nonlinear Sci.29, 1813–1863 (doi:10.1007/s00332-019-09531-w)). More specifically, we are interested in large deformation analysis of bodies that undergo a continuous and simultaneous accretion and ablation on their boundaries while under external loads. In this formulation, the natural configuration of an accreting–ablating body is a time-dependent Riemannian 3 -manifold with a metric that is an unknowna prioriand is determined after solving the accretion–ablation initial-boundary-value problem. In addition to the time of attachment map, we introduce a time of detachment map that along with the time of attachment map, and the accretion and ablation velocities, describes the time-dependent reference configuration of the body. The kinematics, material manifold, material metric, constitutive equations and the balance laws are discussed in detail. As a concrete example and application of the geometric theory, we analyse a thick hollow circular cylinder made of an arbitrary incompressible isotropic material that is under a finite time-dependent extension while undergoing continuous ablation on its inner cylinder boundary and accretion on its outer cylinder boundary. The state of deformation and stress during the accretion–ablation process, and the residual stretch and stress after the completion of the accretion–ablation process, are computed. This article is part of the theme issue ‘Foundational issues, analysis and geometry in continuum mechanics’. 
    more » « less
  3. null (Ed.)
    Abstract We consider an inverse boundary value problem for a semilinear wave equation on a time-dependent Lorentzian manifold with time-like boundary. The time-dependent coefficients of the nonlinear terms can be recovered in the interior from the knowledge of the Neumann-to-Dirichlet map. Either distorted plane waves or Gaussian beams can be used to derive uniqueness. 
    more » « less
  4. We study the fundamental group of an open $$n$$-manifold $$M$$ of nonnegative Ricci curvature with additional stability conditions on $$\widetilde{M}$$, the Riemannian universal cover of $$M$$. We prove that if every asymptotic cone of $$\widetilde{M}$$ is a metric cone, whose cross-section is sufficiently Gromov-Hausdorff close to a prior fixed metric cone, then $$\pi_1(M)$$ is finitely generated and contains a normal abelian subgroup of finite index; if in addition $$\widetilde{M}$$ has Euclidean volume growth of constant at least $$L$$, then we can bound the index of that abelian subgroup by a constant $C(n,L)$. In particular, our result implies that if $$\widetilde{M}$$ has Euclidean volume growth of constant at least $$1-\epsilon(n)$$, then $$\pi_1(M)$$ is finitely generated and $C(n)$-abelian. 
    more » « less
  5. Given only a finite collection of points sampled from a Riemannian manifold embedded in a Euclidean space, in this paper we propose a new method to numerically solve elliptic and parabolic partial differential equations (PDEs) supplemented with boundary conditions. Since the construction of triangulations on unknown manifolds can be both difficult and expensive, both in terms of computational and data requirements, our goal is to solve these problems without a triangulation. Instead, we rely only on using the sample points to define quadrature formulas on the unknown manifold. Our main tool is the diffusion maps algorithm. We re-analyze this well-known method in a variational sense for manifolds with boundary. Our main result is that the variational diffusion maps graph Laplacian is a consistent estimator of the Dirichlet energy on the manifold. This improves upon previous results and provides a rigorous justification of the well-known relationship between diffusion maps and the Neumann eigenvalue problem. Moreover, using semigeodesic coordinates we derive the first uniform asymptotic expansion of the diffusion maps kernel integral operator for manifolds with boundary. This expansion relies on a novel lemma which relates the extrinsic Euclidean distance to the coordinate norm in a normal collar of the boundary. We then use a recently developed method of estimating the distance to boundary function (notice that the boundary location is assumed to be unknown) to construct a consistent estimator for boundary integrals. Finally, by combining these various estimators, we illustrate how to impose Dirichlet and Neumann conditions for some common PDEs based on the Laplacian. Several numerical examples illustrate our theoretical findings. 
    more » « less