A<sc>bstract</sc> We study Randall-Sundrum two brane setups with mismatched brane tensions. For the vacuum solutions, boundary conditions demand that the induced metric on each of the branes is either de Sitter, Anti-de Sitter, or Minkowski. For incompatible boundary conditions, the bulk metric is necessarily time-dependent. This introduces a new class of time-dependent solutions with the potential to address cosmological issues and provide alternatives to conventional inflationary (or contracting) scenarios. We take a first step in this paper toward such solutions. One important finding is that the resulting solutions can be very succinctly described in terms of an effective action involving only the induced metric on either one of the branes and the radion field. But the full geometry cannot necessarily be simply described with a single coordinate patch. We concentrate here on the time- dependent solutions but argue that supplemented with a brane stabilization mechanism one can potentially construct interesting cosmological models this way. This is true both with and without a brane stabilization mechanism.
more »
« less
An Inverse Boundary Value Problem for a Semilinear Wave Equation on Lorentzian Manifolds
Abstract We consider an inverse boundary value problem for a semilinear wave equation on a time-dependent Lorentzian manifold with time-like boundary. The time-dependent coefficients of the nonlinear terms can be recovered in the interior from the knowledge of the Neumann-to-Dirichlet map. Either distorted plane waves or Gaussian beams can be used to derive uniqueness.
more »
« less
- Award ID(s):
- 1955614
- PAR ID:
- 10273531
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present an approach based upon binary tree tensor network (BTTN) states for computing steady-state current statistics for a many-particle 1D ratchet subject to volume exclusion interactions. The ratcheted particles, which move on a lattice with periodic boundary conditions subject to a time-periodic drive, can be stochastically evolved in time to sample representative trajectories via a Gillespie method. In lieu of generating realizations of trajectories, a BTTN state can variationally approximate a distribution over the vast number of many-body configurations. We apply the density matrix renormalization group algorithm to initialize BTTN states, which are then propagated in time via the time-dependent variational principle (TDVP) algorithm to yield the steady-state behavior, including the effects of both typical and rare trajectories. The application of the methods to ratchet currents is highlighted, but the approach extends naturally to other interacting lattice models with time-dependent driving. Although trajectory sampling is conceptually and computationally simpler, we discuss situations for which the BTTN TDVP strategy can be beneficial.more » « less
-
We ask whether artificially induced testosterone pulses (T-pulses), administered to males in the wild at the territory boundary, adjust location preferences within the territory. Multiple transient T-pulses occurring after social interactions in males can alter behaviour and spatial preferences. We previously found that T-pulses administered at the nest induce male California mice, a biparental and territorial species, to spend more time at the nest likely through conditioned place preferences. We hypothesized that T’s reinforcing effects would increase future time by the T-injected males at the boundary and promote territorial defence. Contrary to predictions, T-pulses induced a decrease in male time at the boundary, and instead appeared to promote male territorial/home range expansion, accompanied by shorter sustained vocalizations (SVs) and decreased proportion of three SV bouts. Shorter SVs are associated with aggression in the laboratory. Furthermore, in response to T-male behavioural changes, uninjected female partners decreased boundary time. Our results suggest new functions for socially induced T-pulses, such as extending territorial boundaries/home ranges. Location preferences induced through reinforcing/rewarding mechanisms may be more plastic and dependent on physical and social contexts than previously thought. Moreover, the results suggest that location preferences produced through rewarding/reinforcing mechanisms can be viewed from adaptive perspectives to influence future behaviour.more » « less
-
Abstract We consider the inverse source problem in the parabolic equation, where the unknown source possesses the semi-discrete formulation. Theoretically, we prove that the flux data from any nonempty open subset of the boundary can uniquely determine the semi-discrete source. This means the observed area can be extremely small, and that is the reason we call it sparse boundary data. For the numerical reconstruction, we formulate the problem from the Bayesian sequential prediction perspective and conduct the numerical examples which estimate the space-time-dependent source state by state. To better demonstrate the method’s performance, we solve two common multiscale problems from two models with a long source sequence. The numerical results illustrate that the inversion is accurate and efficient.more » « less
-
Abstract Geodetic strain rate characterizes present-day crustal deformation and therefore may be used as a spatial predictor for earthquakes. However, the reported correlation between strain rates and seismicity varies significantly in different places. Here, we systematically study the correlation between strain rate, seismicity, and seismic moment in six regions representing typical plate boundary zones, diffuse plate boundary regions, and continental interiors. We quantify the strain rate–seismicity correlation using a method similar to the Molchan error diagram and area skill scores. We find that the correlation between strain rate and seismicity varies with different tectonic settings that can be characterized by the mean strain rates. Strong correlations are found in typical plate boundary zones where strain rates are high and concentrated at major fault zones, whereas poor or no correlations are found in stable continental interiors with low strain rates. The correlation between strain rate and seismicity is also time dependent: It is stronger in seismically active periods but weaker during periods of relative quiescence. These temporal variations can be useful for hazard assessment.more » « less
An official website of the United States government

