skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long-term ecological research in freshwaters enabled by regional biodiversity collections, stable isotope analysis, and environmental informatics
Abstract Biodiversity collections are experiencing a renaissance fueled by the intersection of informatics, emerging technologies, and the extended use and interpretation of specimens and archived databases. In this article, we explore the potential for transformative research in ecology integrating biodiversity collections, stable isotope analysis (SIA), and environmental informatics. Like genomic DNA, SIA provides a common currency interpreted in the context of biogeochemical principles. Integration of SIA data across collections allows for evaluation of long-term ecological change at local to continental scales. Challenges including the analysis of sparse samples, a lack of information about baseline isotopic composition, and the effects of preservation remain, but none of these challenges is insurmountable. The proposed research framework interfaces with existing databases and observatories to provide benchmarks for retrospective studies and ecological forecasting. Collections and SIA add historical context to fundamental questions in freshwater ecological research, reference points for ecosystem monitoring, and a means of quantitative assessment for ecosystem restoration.  more » « less
Award ID(s):
2021744
PAR ID:
10436003
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
BioScience
Volume:
73
Issue:
7
ISSN:
0006-3568
Format(s):
Medium: X Size: p. 479-493
Size(s):
p. 479-493
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the last decade, the United States paleontological collections community has invested heavily in the digitization of specimen-based data, including over 10 million USD funded through the National Science Foundation’s Advancing Digitization of Biodiversity Collections program. Fossil specimen data—9.0 million records and counting (Global Biodiversity Information Facility 2024)—are now accessible on open science platforms such as the Global Biodiversity Information Facility (GBIF). However, the full potential of this data is far from realized due to fundamental challenges associated with mobilization, discoverability, and interoperability of paleontological information within the existing cyberinfrastructure landscape and data pipelines. Additionally, it can be difficult for individuals with varying expertise to develop a comprehensive understanding of the existing landscape due to its breadth and complexity. Here, we present preliminary results from a project aiming to explore how we might address these problems. Funding from the US National Science Foundation (NSF) to the University of Colorado Museum of Natural History, Smithsonian National Museum of Natural History, and Arizona State University will result in, among other products, an “ecosystem map” for the paleontological collections community. This map will be an information-rich visualization of entities (e.g. concepts, systems, platforms, mechanisms, drivers, tools, documentation, data, standards, people, organizations) operating in, intersecting with, or existing in parallel to our domain. We are inspired and informed by similar efforts to map the biodiversity informatics landscape (Bingham et al. 2017) and the research infrastructure landscape (Distributed System of Scientific Collections 2024), as well as by many ongoing metadata cataloging projects, e.g. re3data and the Global Registry of Scientific Collections (GRSciColl). Our strategy for developing this ecosystem map is to model the existing information and systems landscape by characterizing entities, e.g. potentially in a graph database as nodes with relationships to other nodes. The ecosystem map will enable us to provide guidance for communities workingacrossdifferent sectors of the landscape, promoting a shared understanding of the ecosystem that everyone works in together. We can also use the map to identify points of entry and engagement at various stages of the paleontological data process, and to engage diverse memberswithinthe paleontological community. We see three primary user types for this map: people new(er) to the community, people with expertise in a subset of the community, and people working to integrate initiatives and systems across communities. Each of these user types needs tailored access to the ecosystem map and its community knowledge. By promoting shared knowledge with the map, users will be able to identify their own space within the ecosystem and the connections or partnerships that they can utilize to expand their knowledge or resources, relieving the burden on any single individual to hold a comprehensive understanding. For example, the flow of taxonomic information between publications, collections, digital resources, and biodiversity aggregators is not straightforward or easy to understand. A person with expertise in collections care may want to use the ecosystem map to understand why taxonomic identifications associated with their specimen occurrence records are showing up incorrectly when published to GBIF. We envision that our final ecosystem map will visualize the flow of taxonomic information and how it is used to interpret specimen occurrence data, thereby highlighting to this user where problems may be happening and whom to ask for help in addressing them (Fig. 1). Ultimately, development of this map will allow us to identify mobilization pathways for paleontological data, highlight core cyberinfrastructure resources, define cyberinfrastructure gaps, strategize future partnerships, promote shared knowledge, and engage a broader array of expertise in the process. Contributing domain-based evidence FAIRly*2 requires expertise that bridges the content (e.g. paleontology) and the mechanics (e.g. informatics). By centering the role of humans in open science cyberinfrastructure throughout our process, we hope to develop systems that create and sustain such expertise. 
    more » « less
  2. Thanks to substantial support for biodiversity data mobilization in recent decades, billions of occurrence records are openly available, documenting life on Earth and enabling timely research, awareness raising, and policy-making. Initiatives across local to global scales have been separately funded to serve different, yet often overlapping audiences of data users, and have developed a variety of platforms and infrastructures to meet the needs of these audiences. The independent progress of biodiversity data providers has led to innovations as well as challenges for the community at large as we move towards connecting and linking a diversity of information from disparate sources as Digital Extended Specimens (DES). Recognizing a need for deeper and more frequent opportunities for communication and collaboration across the globe, an ad-hoc group of representatives of various international, national, and regional organizations have been meeting virtually since 2020 to provide a forum for updates, announcements, and shared progress. This group is provisionally named International Partners for the Digital Extended Specimen (IPDES), and is guided by these four concepts: Biodiversity, Connection, Knowledge and Agency. Participants in IPDES include representatives of the Global Biodiversity Information Facility (GBIF), Integrated Digitized Biocollections (iDigBio), American Institute of Biological Sciences (AIBS), Biodiversity Collections Network (BCoN), Natural Science Collections Alliance (NSCA), Distributed System of Scientific Collections (DiSSCo), Atlas of Living Australia (ALA), Biodiversity Information Standards (TDWG), Society for the Preservation of Natural History Collections (SPNHC), National Specimen Information Infrastructure of China (NSII), and South African National Biodiversity Institute (SANBI), as well as individuals involved with biodiversity informatics initiatives, natural science collections, museums, herbaria, and universities. Our global partners group strives to increase representation from around the globe as we aim to enable research that contributes to novel discoveries and addresses the societal challenges leading to the biodiversity crisis. Our overarching mission is to expand on the community-driven successes to connect biodiversity data and knowledge through coordination of a globally integrated network of stakeholders to enable an extensible technical and social infrastructure of data, tools, and working practices in support of our vision. The main work of our group thus far includes publishing a paper on the Digital Extended Specimen (Hardisty et al. 2022), organizing and hosting an array of activities at conferences, and asynchronous online work and forum-based exchanges. We aim to advance discussion on topics of broad interest to our community such as social and technical capacity building, broadening participation, expanding social and data networks, improving data models and building a backbone for the DES, and identifying international funding solutions. This presentation will highlight some of these activities and detail progress towards a roadmap for the development of the human network and technical infrastructure necessary to support the DES. It provides an opportunity for feedback from and engagement by stakeholder communities such as TDWG and other initiatives with a focus on data standards and biodiversity informatics, as we solidify our plans for the future in support of integrated and interconnected biodiversity data and credit for those doing the work. 
    more » « less
  3. Biodiversity-ecosystem functioning (BEF) research grew rapidly following concerns that biodiversity loss would negatively affect ecosystem functions and the ecosystem services they underpin. However, despite evidence that biodiversity strongly affects ecosystem functioning, the influence of BEF research upon policy and the management of ‘real-world’ ecosystems, i.e., semi-natural habitats and agroecosystems, has been limited. Here, we address this issue by classifying BEF research into three clusters based on the degree of human control over species composition and the spatial scale, in terms of grain, of the study, and discussing how the research of each cluster is best suited to inform particular fields of ecosystem management. Research in the first cluster, small-grain highly controlled studies, is best able to provide general insights into mechanisms and to inform the management of species-poor and highly managed systems such as croplands, plantations, and the restoration of heavily degraded ecosystems. Research from the second cluster, small-grain observational studies, and species removal and addition studies, may allow for direct predictions of the impacts of species loss in specific semi-natural ecosystems. Research in the third cluster, large-grain uncontrolled studies, may best inform landscape-scale management and national-scale policy. We discuss barriers to transfer within each cluster and suggest how new research and knowledge exchange mechanisms may overcome these challenges. To meet the potential for BEF research to address global challenges, we recommend transdisciplinary research that goes beyond these current clusters and considers the social-ecological context of the ecosystems in which BEF knowledge is generated. This requires recognizing the social and economic value of biodiversity for ecosystem services at scales, and in units, that matter to land managers and policy makers. 
    more » « less
  4. Abstract Biodiversity is believed to be closely related to ecosystem functions. However, the ability of existing biodiversity measures, such as species richness and phylogenetic diversity, to predict ecosystem functions remains elusive. Here, we propose a new vector of diversity metrics, structural diversity, which directly incorporates niche space in measuring ecosystem structure. We hypothesize that structural diversity will provide better predictive ability of key ecosystem functions than traditional biodiversity measures. Using the new lidar-derived canopy structural diversity metrics on 19 National Ecological Observation Network forested sites across the USA, we show that structural diversity is a better predictor of key ecosystem functions, such as productivity, energy, and nutrient dynamics than existing biodiversity measures (i.e. species richness and phylogenetic diversity). Similar to existing biodiversity measures, we found that the relationships between structural diversity and ecosystem functions are sensitive to environmental context. Our study indicates that structural diversity may be as good or a better predictor of ecosystem functions than species richness and phylogenetic diversity. 
    more » « less
  5. Abstract Shifts in reproductive timing are among the most commonly documented responses of organisms to global climate change. However, our knowledge of these responses is biased towards taxa that are easily observable and abundant in existing biodiversity data sets. Mammals are common subjects in reproductive biology, but mammalian phenology and its drivers in the wild remain poorly understood because many species are small, secretive, or too labor‐intensive to monitor. We took an informatics‐based approach to reconstructing breeding phenology in the widespread North American deer mouse (Peromyscus maniculatus) using individual‐level reproductive observations from digitized museum specimens and field censuses spanning >100 yr and >45 degrees of latitude. We reconstructed female phenology in different regions and tested the importance of three environmental variables (photoperiod, temperature, precipitation) as breeding cues. Photoperiod and temperature were strong positive and negative breeding cues, respectively, whereas precipitation was not a significant predictor of breeding phenology. However, phenologies and the use of environmental cues varied substantially among regions, and we found evidence that these cueing repertoires are tuned to ecosystem‐specific limiting conditions. Our results reiterate the importance of ecological context in optimizing reproduction and demonstrate how harmonization across biodiversity data resources allows new insight into phenology and its drivers in wild mammals. 
    more » « less