Abstract Effects of global climate change on population persistence are often mediated by life‐history traits of individuals, especially the timing of somatic growth, reproductive development, and reproduction itself. These traits can vary among age groups and between the sexes, a result of differential life‐history tactics and levels of lifetime reproductive investment. Unfortunately, the trait data necessary for revealing sex‐specific breeding behaviors and use of breeding cues over reasonably large geographic areas remain sparse for most taxa. In this study, we assembled and analyzed a new reproductive trait base for the North American deer mouse (Peromyscus maniculatus) from digitized natural history specimens and field censuses. We used the data to reconstruct sex‐specific breeding phenologies and their drivers within and among North American ecoregions. Male and female phenologies varied across the geographic range of this species, with discordance in timing and intensity being highest in regions of lower seasonality (and longer breeding seasons). Reliance on environmental variables as breeding cues also appeared to vary in a sex‐specific manner, being most similar for photoperiod and least similar for temperature (positive male response and negative female response); in addition, model validation indicated that phenological models generalized better for males than for females. Finally, our individual‐level trait data also show that male reproductive investment (quantified as relative testis size) varies across the vastly different abiotic and social (i.e., female breeding) contexts studied here. By harmonizing across a broad set of digital data resources, we demonstrate the potential to uncover drivers of phenological variation within species and inform global change predictions at multiple scales of biological organization.
more »
« less
Digital biodiversity data sets reveal breeding phenology and its drivers in a widespread North American mammal
Abstract Shifts in reproductive timing are among the most commonly documented responses of organisms to global climate change. However, our knowledge of these responses is biased towards taxa that are easily observable and abundant in existing biodiversity data sets. Mammals are common subjects in reproductive biology, but mammalian phenology and its drivers in the wild remain poorly understood because many species are small, secretive, or too labor‐intensive to monitor. We took an informatics‐based approach to reconstructing breeding phenology in the widespread North American deer mouse (Peromyscus maniculatus) using individual‐level reproductive observations from digitized museum specimens and field censuses spanning >100 yr and >45 degrees of latitude. We reconstructed female phenology in different regions and tested the importance of three environmental variables (photoperiod, temperature, precipitation) as breeding cues. Photoperiod and temperature were strong positive and negative breeding cues, respectively, whereas precipitation was not a significant predictor of breeding phenology. However, phenologies and the use of environmental cues varied substantially among regions, and we found evidence that these cueing repertoires are tuned to ecosystem‐specific limiting conditions. Our results reiterate the importance of ecological context in optimizing reproduction and demonstrate how harmonization across biodiversity data resources allows new insight into phenology and its drivers in wild mammals.
more »
« less
- Award ID(s):
- 1812152
- PAR ID:
- 10452708
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 102
- Issue:
- 3
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Animals use climate-related environmental cues to fine-tune breeding timing and investment to match peak food availability. In birds, spring temperature is a commonly documented cue used to initiate breeding, but with global climate change, organisms are experiencing both directional changes in ambient temperatures and extreme year-to-year precipitation fluctuations. Montane environments exhibit complex climate patterns where temperatures and precipitation change along elevational gradients, and where exacerbated annual variation in precipitation has resulted in extreme swings between heavy snow and drought. We used 10 years of data to investigate how annual variation in climatic conditions is associated with differences in breeding phenology and reproductive performance in resident mountain chickadees (Poecile gambeli) at two elevations in the northern Sierra Nevada mountains, USA. Variation in spring temperature was not associated with differences in breeding phenology across elevations in our system. Greater snow accumulation was associated with later breeding initiation at high, but not low, elevation. Brood size was reduced under drought, but only at low elevation. Our data suggest complex relationships between climate and avian reproduction and point to autumn climate as important for reproductive performance, likely via its effect on phenology and abundance of invertebrates.more » « less
-
Abstract For many species, a well documented response to anthropogenic climate change is a shift in various aspects of its life history, including its timing or phenology. Often, these phenological shifts are associated with changes in abiotic factors used as proxies for resource availability or other suitable conditions. Resource availability, however, can also be impacted by competition, but the impact of competition on phenology is less studied than abiotic drivers. We fit generalized additive models (GAMs) to a long‐term experimental dataset on small mammals monitored in the southwestern United States and show that altered competitive landscapes can drive shifts in breeding timing and prevalence, and that, relative to a dominant competitor, other species exhibit less specific responses to environmental factors. These results suggest that plasticity of phenological responses, which is often described in the context of annual variation in abiotic factors, can occur in response to biotic context as well. Variation in phenological responses under different biotic conditions shown here further demonstrates that a more nuanced understanding of shifting biotic interactions is useful to better understand and predict biodiversity patterns in a changing world.more » « less
-
The timing of life events (phenology) can be influenced by climate. Studies from around the world tell us that climate cues and species' responses can vary greatly. If variation in climate effects on phenology is strong within a single ecosystem, climate change could lead to ecological disruption, but detailed data from diverse taxa within a single ecosystem are rare. We collated first sighting and median activity within a high-elevation environment for plants, insects, birds, mammals and an amphibian across 45 years (1975–2020). We related 10 812 phenological events to climate data to determine the relative importance of climate effects on species’ phenologies. We demonstrate significant variation in climate-phenology linkage across taxa in a single ecosystem. Both current and prior climate predicted changes in phenology. Taxa responded to some cues similarly, such as snowmelt date and spring temperatures; other cues affected phenology differently. For example, prior summer precipitation had no effect on most plants, delayed first activity of some insects, but advanced activity of the amphibian, some mammals, and birds. Comparing phenological responses of taxa at a single location, we find that important cues often differ among taxa, suggesting that changes to climate may disrupt synchrony of timing among taxa.more » « less
-
Abstract Many animals rely on photoperiodic and non-photoperiodic environmental cues to gather information and appropriately time life-history stages across the annual cycle, such as reproduction, molt, and migration. Here, we experimentally demonstrate that the reproductive physiology, but not migratory behavior, of captive Pine Siskins (Spinus pinus) responds to both food and social cues during the spring migratory-breeding period. Pine Siskins are a nomadic finch with a highly flexible breeding schedule and, in the spring, free-living Pine Siskins can wander large geographic areas and opportunistically breed. To understand the importance of non-photoperiodic cues to the migratory-breeding transition, we maintained individually housed birds on either a standard or enriched diet in the presence of group-housed heterospecifics or conspecifics experiencing either the standard or enriched diet type. We measured body condition and reproductive development of all Pine Siskins and, among individually housed Pine Siskins, quantified nocturnal migratory restlessness. In group-housed birds, the enriched diet caused increases in body condition and, among females, promoted reproductive development. Among individually housed birds, female reproductive development differed between treatment groups, whereas male reproductive development did not. Specifically, individually housed females showed greater reproductive development when presented with conspecifics compared to heterospecifics. The highest rate of female reproductive development, however, was observed among individually housed females provided the enriched diet and maintained with group-housed conspecifics on an enriched diet. Changes in nocturnal migratory restlessness did not vary by treatment group or sex. By manipulating both the physical and social environment, this study demonstrates how multiple environmental cues can affect the timing of transitions between life-history stages with differential responses between sexes and between migratory and reproductive systems.more » « less
An official website of the United States government
