skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: X-Ray Polarimetry Reveals the Magnetic-field Topology on Sub-parsec Scales in Tycho’s Supernova Remnant
Abstract Supernova remnants are commonly considered to produce most of the Galactic cosmic rays via diffusive shock acceleration. However, many questions regarding the physical conditions at shock fronts, such as the magnetic-field morphology close to the particle acceleration sites, remain open. Here we report the detection of a localized polarization signal from some synchrotron X-ray emitting regions of Tycho’s supernova remnant made by the Imaging X-ray Polarimetry Explorer. The derived degree of polarization of the X-ray synchrotron emission is 9% ± 2% averaged over the whole remnant, and 12% ± 2% at the rim, higher than the value of polarization of 7%–8% observed in the radio band. In the west region, the degree of polarization is 23% ± 4%. The degree of X-ray polarization in Tycho is higher than for Cassiopeia A, suggesting a more ordered magnetic field or a larger maximum turbulence scale. The measured tangential direction of polarization corresponds to the radial magnetic field, and is consistent with that observed in the radio band. These results are compatible with the expectation of turbulence produced by an anisotropic cascade of a radial magnetic field near the shock, where we derive a magnetic-field amplification factor of 3.4 ± 0.3. The fact that this value is significantly smaller than those expected from acceleration models is indicative of highly anisotropic magnetic-field turbulence, or that the emitting electrons either favor regions of lower turbulence, or accumulate close to where the orientation of the magnetic field is preferentially radially oriented due to hydrodynamical instabilities.  more » « less
Award ID(s):
2108622
PAR ID:
10436067
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
945
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
52
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report on a ∼5 σ detection of polarized 3–6 keV X-ray emission from the supernova remnant Cassiopeia A (Cas A) with the Imaging X-ray Polarimetry Explorer (IXPE). The overall polarization degree of 1.8% ± 0.3% is detected by summing over a large region, assuming circular symmetry for the polarization vectors. The measurements imply an average polarization degree for the synchrotron component of ∼2.5%, and close to 5% for the X-ray synchrotron-dominated forward shock region. These numbers are based on an assessment of the thermal and nonthermal radiation contributions, for which we used a detailed spatial-spectral model based on Chandra X-ray data. A pixel-by-pixel search for polarization provides a few tentative detections from discrete regions at the ∼ 3 σ confidence level. Given the number of pixels, the significance is insufficient to claim a detection for individual pixels, but implies considerable turbulence on scales smaller than the angular resolution. Cas A’s X-ray continuum emission is dominated by synchrotron radiation from regions within ≲10 17 cm of the forward and reverse shocks. We find that (i) the measured polarization angle corresponds to a radially oriented magnetic field, similar to what has been inferred from radio observations; (ii) the X-ray polarization degree is lower than in the radio band (∼5%). Since shock compression should impose a tangential magnetic-field structure, the IXPE results imply that magnetic fields are reoriented within ∼10 17 cm of the shock. If the magnetic-field alignment is due to locally enhanced acceleration near quasi-parallel shocks, the preferred X-ray polarization angle suggests a size of 3 × 10 16 cm for cells with radial magnetic fields. 
    more » « less
  2. Abstract X-ray polarization is a unique new probe of the particle acceleration in astrophysical jets made possible through the Imaging X-ray Polarimetry Explorer. Here we report on the first dense X-ray polarization monitoring campaign on the blazar Mrk 421. Our observations were accompanied by an even denser radio and optical polarization campaign. We find significant short-timescale variability in both X-ray polarization degree and angle, including an ∼90° angle rotation about the jet axis. We attribute this to random variations of the magnetic field, consistent with the presence of turbulence but also unlikely to be explained by turbulence alone. At the same time, the degree of lower-energy polarization is significantly lower and shows no more than mild variability. Our campaign provides further evidence for a scenario in which energy-stratified shock-acceleration of relativistic electrons, combined with a turbulent magnetic field, is responsible for optical to X-ray synchrotron emission in blazar jets. 
    more » « less
  3. Abstract Particle acceleration mechanisms in supermassive black hole jets, such as shock acceleration, magnetic reconnection, and turbulence, are expected to have observable signatures in the multiwavelength polarization properties of blazars. The recent launch of the Imaging X-Ray Polarimetry Explorer (IXPE) enables us, for the first time, to use polarization in the X-ray band (2–8 keV) to probe the properties of the jet synchrotron emission in high-synchrotron-peaked BL Lac objects (HSPs). We report the discovery of X-ray linear polarization (degree Π x = 15% ± 2% and electric vector position angle ψ x = 35° ± 4°) from the jet of the HSP Mrk 421 in an average X-ray flux state. At the same time, the degree of polarization at optical, infrared, and millimeter wavelengths was found to be lower by at least a factor of 3. During the IXPE pointing, the X-ray flux of the source increased by a factor of 2.2, while the polarization behavior was consistent with no variability. The higher level of Π x compared to longer wavelengths, and the absence of significant polarization variability, suggest a shock is the most likely X-ray emission site in the jet of Mrk 421 during the observation. The multiwavelength polarization properties are consistent with an energy-stratified electron population, where the particles emitting at longer wavelengths are located farther from the acceleration site, where they experience a more disordered magnetic field. 
    more » « less
  4. X-ray polarization, which now can be measured by the Imaging X-ray Polarimetry Explorer (IXPE), is a new probe of jets in the supermassive black hole systems of active galactic nuclei (AGNs). Here, we summarize IXPE observations of radio-loud AGNs that have been published thus far. Blazars with synchrotron spectral energy distributions (SEDs) that peak at X-ray energies are routinely detected. The degree of X-ray polarization is considerably higher than at longer wavelengths. This is readily explained by energy stratification of the emission regions when electrons lose energy via radiation as they propagate away from the sites of particle acceleration as predicted in shock models. However, the 2–8 keV polarization electric vector is not always aligned with the jet direction as one would expect unless the shock is oblique. Magnetic reconnection may provide an alternative explanation. The rotation of the polarization vector in Mrk421 suggests the presence of a helical magnetic field in the jet. In blazars with lower-frequency peaks and the radio galaxy Centaurus A, the non-detection of X-ray polarization by IXPE constrains the X-ray emission mechanism. 
    more » « less
  5. Context.   Tycho ’s supernova remnant (SNR) is associated with the historical supernova (SN) event SN 1572 of Type Ia. The explosion occurred in a relatively clean environment, and was visually observed, providing an age estimate. This SNR therefore represents an ideal astrophysical test-bed for the study of cosmic-ray acceleration and related phenomena. A number of studies suggest that shock acceleration with particle feedback and very efficient magnetic-field amplification combined with Alfvénic drift are needed to explain the rather soft radio spectrum and the narrow rims observed in X-rays. Aims. We show that the broadband spectrum of Tycho ’s SNR can alternatively be well explained when accounting for stochastic acceleration as a secondary process. The re-acceleration of particles in the turbulent region immediately downstream of the shock should be efficient enough to impact particle spectra over several decades in energy. The so-called Alfvénic drift and particle feedback on the shock structure are not required in this scenario. Additionally, we investigate whether synchrotron losses or magnetic-field damping play a more profound role in the formation of the non-thermal filaments. Methods. We solved the full particle transport equation in test-particle mode using hydrodynamic simulations of the SNR plasma flow. The background magnetic field was either computed from the induction equation or follows analytic profiles, depending on the model considered. Fast-mode waves in the downstream region provide the diffusion of particles in momentum space. Results. We show that the broadband spectrum of Tycho can be well explained if magnetic-field damping and stochastic re-acceleration of particles are taken into account. Although not as efficient as standard diffusive shock acceleration, stochastic acceleration leaves its imprint on the particle spectra, which is especially notable in the emission at radio wavelengths. We find a lower limit for the post-shock magnetic-field strength ∼330  μ G, implying efficient amplification even for the magnetic-field damping scenario. Magnetic-field damping is necessary for the formation of the filaments in the radio range, while the X-ray filaments are shaped by both the synchrotron losses and magnetic-field damping. 
    more » « less