skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Instability of a dusty vortex
We investigate the effect of inertial particles dispersed in a circular patch of finite radius on the stability of a two-dimensional Rankine vortex in semi-dilute dusty flows. Unlike the particle-free case where no unstable modes exist, we show that the feedback force from the particles triggers a novel instability. The mechanisms driving the instability are characterized using linear stability analysis for weakly inertial particles and further validated against Eulerian–Lagrangian simulations. We show that the particle-laden vortex is always unstable if the mass loading $M>0$ . Surprisingly, even non-inertial particles destabilize the vortex by a mechanism analogous to the centrifugal Rayleigh–Taylor instability in radially stratified vortex with density jump. We identify a critical mass loading above which an eigenmode $$m$$ becomes unstable. This critical mass loading drops to zero as $$m$$ increases. When particles are inertial, modes that fall below the critical mass loading become unstable, whereas modes above it remain unstable but with lower growth rates compared with the non-inertial case. Comparison with Eulerian–Lagrangian simulations shows that growth rates computed from simulations match well the theoretical predictions. Past the linear stage, we observe the emergence of high-wavenumber modes that turn into spiralling arms of concentrated particles emanating out of the core, while regions of particle-free flow are sucked inward. The vorticity field displays a similar pattern which leads to the breakdown of the initial Rankine structure. This novel instability for a dusty vortex highlights how the feedback force from the disperse phase can induce the breakdown of an otherwise resilient vortical structure.  more » « less
Award ID(s):
2148710
PAR ID:
10435744
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
948
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the instability of a dusty simple shear flow where the dust particles are distributed non-uniformly. A simple shear flow is modally stable to infinitesimal perturbations. Also, a band of particles remains unaffected in the absence of any background flow. However, we demonstrate that the combined scenario – comprising a simple shear flow with a localized band of particles – can exhibit destabilization due to their two-way interaction. The instability originates solely from the momentum feedback from the particle phase to the fluid phase. Eulerian–Lagrangian simulations are employed to illustrate the existence of this instability. Furthermore, the results are compared with a linear stability analysis of the system using an Eulerian–Eulerian model. Our findings indicate that the instability has an inviscid origin and is characterized by a critical wavelength below which it is not persistent. We have observed that increasing particle inertia dampens the unstable modes, whereas the strength of the instability increases with the strength of the coupling between the fluid and particle phases. 
    more » « less
  2. We investigate the effect of particle inertia on the merger of co-rotating dusty vortex pairs at semi-dilute concentrations. In a particle-free flow, the merger is triggered once the ratio of vortex core size to vortex separation reaches a critical value. The vortex pair separation then decreases monotonically until the two cores merge together. Using Eulerian–Lagrangian simulations of co-rotating particle-laden vortices, we show substantial departure from the vortex dynamics previously established in particle-free flows. Most strikingly, we find that disperse particles with moderate inertia cause the vortex pair to push apart to a separation nearly twice as large as the initial separation. During this stage, the drag force exerted by particles ejected out of the vortex cores on the fluid results in a net repulsive force that pushes the two cores apart. Eventually, the two dusty vortices merge into a single vortex with most particles accumulating outside the core, similar to the dusty Lamb–Oseen vortex described in Shuai & Kasbaoui (J. Fluid Mech., vol 936, 2022, p. A8). For weakly inertial particles, we find that the merger dynamics follows the same mechanics as that of a single-phase flow, albeit with a density that must be adjusted to match the mixture density. For highly inertial particles, the feedback force exerted by the particles on the fluid may stretch the two cores during the merger to a point where each core splits into two, resulting in inner and outer vortex pairs. In this case, the merger occurs in two stages where the inner vortices merge first, followed by the outer ones. 
    more » « less
  3. We investigate the effect of inertial particles on the stability and decay of a prototypical vortex tube, represented by a two-dimensional Lamb–Oseen vortex. In the absence of particles, the strong stability of this flow makes it resilient to perturbations, whereby vorticity and enstrophy decay at a slow rate controlled by viscosity. Using Eulerian–Lagrangian simulations, we show that the dispersion of semidilute inertial particles accelerates the decay of the vortex tube by orders of magnitude. In this work, mass loading is unity, ensuring that the fluid and particle phases are tightly coupled. Particle inertia and vortex strength are varied to yield Stokes numbers 0.1–0.4 and circulation Reynolds numbers 800–5000. Preferential concentration causes these inertial particles to be ejected from the vortex core forming a ring-shaped cluster and a void fraction bubble that expand outwards. The outward migration of the particles causes a flattening of the vorticity distribution, which enhances the decay of the vortex. The latter is further accelerated by small-scale clustering that causes enstrophy to grow, in contrast with the monotonic decay of enstrophy in single-phase two-dimensional vortices. These dynamics unfold on a time scale that is set by preferential concentration and is two orders of magnitude lower than the viscous time scale. Increasing particle inertia causes a faster decay of the vortex. This work shows that the injection of inertial particles could provide an effective strategy for the control and suppression of resilient vortex tubes. 
    more » « less
  4. The Moore–Saffman–Tsai–Widnall (MSTW) instability is a parametric instability that arises in strained vortex columns. The strain is assumed to be weak and perpendicular to the vortex axis. In this second part of our investigation of vortex instability including density and surface tension effects, a linear stability analysis for this situation is presented. The instability is caused by resonance between two Kelvin waves with azimuthal wavenumber separated by two. The dispersion relation for Kelvin waves and resonant modes are obtained. Results show that the stationary resonant waves for $$m=\pm 1$$ are more unstable when the density ratio $$\rho_2/\rho_1$$ , the ratio of vortex to ambient fluid density, approaches zero, whereas the growth rate is maximised near $$\rho _2/\rho _1 =0.215$$ for the resonance $(m,m+2)=(0,2)$ . Surface tension suppresses the instability, but its effect is less significant than that of density. As the azimuthal wavenumber $$m$$ increases, the MSTW instability decays, in contrast to the curvature instability examined in Part 1 (Chang & Llewellyn Smith, J. Fluid Mech. vol. 913, 2021, A14). 
    more » « less
  5. Stationary longitudinal vortical rolls emerge in katabatic and anabatic Prandtl slope flows at shallow slopes as a result of an instability when the imposed surface buoyancy flux relative to the background stratification is sufficiently large. Here, we identify the self-pairing of these longitudinal rolls as a unique flow structure. The topology of the counter-rotating vortex pair bears a striking resemblance to speaker-wires and their interaction with each other is a precursor to further destabilization and breakdown of the flow field into smaller structures. On its own, a speaker-wire vortex retains its unique topology without any vortex reconnection or breakup. For a fixed slope angle $$\alpha =3^{\circ }$$ and at a constant Prandtl number, we analyse the saturated state of speaker-wire vortices and perform a bi-global linear stability analysis based on their stationary state. We establish the existence of both fundamental and subharmonic secondary instabilities depending on the circulation and transverse wavelength of the base state of speaker-wire vortices. The dominance of subharmonic modes relative to the fundamental mode helps to explain the relative stability of a single vortex pair compared to the vortex dynamics in the presence of two or an even number of pairs. These instability modes are essential for the bending and merging of multiple speaker-wire vortices, which break up and lead to more dynamically unstable states, eventually paving the way for transition towards turbulence. This process is demonstrated via three-dimensional flow simulations with which we are able to track the nonlinear temporal evolution of these instabilities. 
    more » « less