ABSTRACT The carotenoid‐based colours of birds are a celebrated example of biological diversity and an important system for the study of evolution. Recently, a two‐step mechanism, with the enzymes cytochrome P450 2J19 (CYP2J19) and 3‐hydroxybutyrate dehydrogenase 1‐like (BDH1L), was described for the biosynthesis of red ketocarotenoids from yellow dietary carotenoids in the retina and plumage of birds. A common assumption has been that all birds with ketocarotenoid‐based plumage coloration used this CYP2J19/BDH1L mechanism to produce red feathers. We tested this assumption in house finches (Haemorhous mexicanus) by examining the catalytic function of the house finch homologues of these enzymes and tracking their expression in birds growing new feathers. We found that CYP2J19 and BDH1L did not catalyse the production of 3‐hydroxy‐echinenone (3‐OH‐echinenone), the primary red plumage pigment of house finches, when provided with common dietary carotenoid substrates. Moreover, gene expression analyses revealed little to no expression ofCYP2J19in liver tissue or growing feather follicles, the putative sites of pigment metabolism in moulting house finches. Finally, although the hepatic mitochondria of house finches have high concentrations of 3‐OH‐echinenone, observations using fluorescent markers suggest that both CYP2J19 and BDH1L localise to the endomembrane system rather than the mitochondria. We propose that house finches and other birds that deposit 3‐OH‐echinenone as their primary red plumage pigment use an alternative enzymatic pathway to produce their characteristic red ketocarotenoid‐based coloration.
more »
« less
Testosterone Coordinates Gene Expression Across Different Tissues to Produce Carotenoid-Based Red Ornamentation
Abstract Carotenoid pigments underlie most of the red, orange, and yellow visual signals used in mate choice in vertebrates. However, many of the underlying processes surrounding the production of carotenoid-based traits remain unclear due to the complex nature of carotenoid uptake, metabolism, and deposition across tissues. Here, we leverage the ability to experimentally induce the production of a carotenoid-based red plumage patch in the red-backed fairywren (Malurus melanocephalus), a songbird in which red plumage is an important male sexual signal. We experimentally elevated testosterone in unornamented males lacking red plumage to induce the production of ornamentation and compared gene expression in both the liver and feather follicles between unornamented control males, testosterone-implanted males, and naturally ornamented males. We show that testosterone upregulates the expression of CYP2J19, a gene known to be involved in ketocarotenoid metabolism, and a putative carotenoid processing gene (ELOVL6) in the liver, and also regulates the expression of putative carotenoid transporter genes in red feather follicles on the back, including ABCG1. In black feathers, carotenoid-related genes are downregulated and melanin genes upregulated, but we find that carotenoids are still present in the feathers. This may be due to the activity of the carotenoid-cleaving enzyme BCO2 in black feathers. Our study provides a first working model of a pathway for carotenoid-based trait production in free-living birds, implicates testosterone as a key regulator of carotenoid-associated gene expression, and suggests hormones may coordinate the many processes that underlie the production of these traits across multiple tissues.
more »
« less
- Award ID(s):
- 2037739
- PAR ID:
- 10436139
- Editor(s):
- Parsch, John
- Date Published:
- Journal Name:
- Molecular Biology and Evolution
- Volume:
- 40
- Issue:
- 4
- ISSN:
- 0737-4038
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sex differences in gene expression tend to increase with age across a variety of species, often coincident with the development of sexual dimorphism and maturational changes in hormone levels. However, because most transcriptome-wide characterizations of sexual divergence are framed as comparisons of sex-biased gene expression across ages, it can be difficult to determine the extent to which age-biased gene expression within each sex contributes to the emergence of sex-biased gene expression. Using RNAseq in the liver of the sexually dimorphic brown anole lizard ( Anolis sagrei ), we found that a pronounced increase in sex-biased gene expression with age was associated with a much greater degree of age-biased gene expression in males than in females. This pattern suggests that developmental changes in males, such as maturational increases in circulating testosterone, contribute disproportionately to the ontogenetic emergence of sex-biased gene expression. To test this hypothesis, we used four different experimental contrasts to independently characterize sets of genes whose expression differed as a function of castration and/or treatment with exogenous testosterone. We found that genes that were significantly male-biased in expression or upregulated as males matured tended to be upregulated by testosterone, whereas genes that were female-biased or downregulated as males matured tended to be downregulated by testosterone. Moreover, the first two principal components describing multivariate gene expression indicated that exogenous testosterone reversed many of the feminizing effects of castration on the liver transcriptome of maturing males. Collectively, our results suggest that developmental changes that occur in males contribute disproportionately to the emergence of sex-biased gene expression in the Anolis liver, and that many of these changes are orchestrated by androgens such as testosterone.more » « less
-
In a hybrid zone between two tropical lekking birds, yellow male plumage of one species has introgressed asymmetrically replacing white plumage of another via sexual selection. Here, we present a detailed analysis of the plumage trait to uncover its physical and genetic bases and trace its evolutionary history. We determine that the carotenoid lutein underlies the yellow phenotype and describe microstructural feather features likely to enhance color appearance. These same features reduce predicted water shedding capacity of feathers, a potential liability in the tropics. Through genome-scale DNA sequencing of hybrids and each species in the genus, we identifyBCO2as the major gene responsible for the color polymorphism. TheBCO2gene tree and genome-wide allele frequency patterns suggest that carotenoid-pigmented collars initially arose in a third species and reached the hybrid zone through historical gene flow. Complex interplay between sexual selection and hybridization has thus shaped phenotypes of these species, where conspicuous sexual traits are key to male reproductive success.more » « less
-
ABSTRACT Expression of vibrant plumage color plays important communication roles in many avian clades, ranging from penguins to passerines, but comparatively less is known about color signals in parrots (order Psittaciformes). We measured variation in coloration from three plumage patches (red face, blue rump, red tail) in an introduced population of rosy‐faced lovebirds (Agapornis roseicollis) in Phoenix, Arizona, USA and examined color differences between the sexes and ages as well as relationships with several indices of quality, including disease presence/absence (infection with beak and feather disease,Circovirus parrot, and a polyomavirus,Gammapolyomavirus avis), nutritional state (e.g., blood glucose and ketone levels), and habitat type from which birds were captured. We found that different plumage colors were linked to different quality indices: (a) adults had redder faces than juveniles, and birds with brighter faces had lower glucose levels and were less likely to have polyomavirus; (b) males had bluer rumps than females; and (c) birds caught farther from the city had redder and darker tail feathers than those caught closer to the urban center. Our findings reveal diverse information underlying variation in the expression of these disparate, ornate feather traits in an introduced parrot species, and suggest that these condition‐dependent and/or sexually dichromatic features may serve important intraspecific signaling roles (i.e., mediating rival competitions or mate choices).more » « less
-
vonHoldt, Bridgett (Ed.)Abstract Iridescence is widespread in the living world, occurring in organisms as diverse as bacteria, plants, and animals. Yet, compared to pigment-based forms of coloration, we know surprisingly little about the developmental and molecular bases of the structural colors that give rise to iridescence. Birds display a rich diversity of iridescent structural colors that are produced in feathers by the arrangement of melanin-containing organelles called melanosomes into nanoscale configurations, but how these often unusually shaped melanosomes form, or how they are arranged into highly organized nanostructures, remains largely unknown. Here, we use functional genomics to explore the developmental basis of iridescent plumage using superb starlings (Lamprotornis superbus), which produce both iridescent blue and non-iridescent red feathers. Through morphological and chemical analyses, we confirm that hollow, flattened melanosomes in iridescent feathers are eumelanin-based, whereas melanosomes in non-iridescent feathers are solid and amorphous, suggesting that high pheomelanin content underlies red coloration. Intriguingly, the nanoscale arrangement of melanosomes within the barbules was surprisingly similar between feather types. After creating a new genome assembly, we use transcriptomics to show that non-iridescent feather development is associated with genes related to pigmentation, metabolism, and mitochondrial function, suggesting non-iridescent feathers are more energetically expensive to produce than iridescent feathers. However, iridescent feather development is associated with genes related to structural and cellular organization, suggesting that, while nanostructures themselves may passively assemble, barbules and melanosomes may require active organization to give them their shape. Together, our analyses suggest that iridescent feathers form through a combination of passive self-assembly and active processes.more » « less
An official website of the United States government

