Vertebrates host complex microbiomes that impact their physiology. In many taxa, including colourful wood-warblers, gut microbiome similarity decreases with evolutionary distance. This may suggest that as host populations diverge, so do their microbiomes, because of either tight coevolutionary dynamics, or differential environmental influences, or both. Hybridization is common in wood-warblers, but the effects of evolutionary divergence on the microbiome during secondary contact are unclear. Here, we analyse gut microbiomes in two geographically disjunct hybrid zones between blue-winged warblers (Vermivora cyanoptera) and golden-winged warblers (Vermivora chrysoptera). We performed 16S faecal metabarcoding to identify species-specific bacteria and test the hypothesis that host admixture is associated with gut microbiome disruption. Species identity explained a small amount of variation between microbiomes in only one hybrid zone. Co-occurrence of species-specific bacteria was rare for admixed individuals, yet microbiome richness was similar among admixed and parental individuals. Unexpectedly, we found several bacteria that were more abundant among admixed individuals with a broader deposition of carotenoid-based plumage pigments. These bacteria are predicted to encode carotenoid biosynthesis genes, suggesting birds may take advantage of pigments produced by their gut microbiomes. Thus, host admixture may facilitate beneficial symbiotic interactions which contribute to plumage ornaments that function in sexual selection.
more »
« less
This content will become publicly available on November 22, 2025
Sequential introgression of a carotenoid processing gene underlies sexual ornament diversity in a genus of manakins
In a hybrid zone between two tropical lekking birds, yellow male plumage of one species has introgressed asymmetrically replacing white plumage of another via sexual selection. Here, we present a detailed analysis of the plumage trait to uncover its physical and genetic bases and trace its evolutionary history. We determine that the carotenoid lutein underlies the yellow phenotype and describe microstructural feather features likely to enhance color appearance. These same features reduce predicted water shedding capacity of feathers, a potential liability in the tropics. Through genome-scale DNA sequencing of hybrids and each species in the genus, we identifyBCO2as the major gene responsible for the color polymorphism. TheBCO2gene tree and genome-wide allele frequency patterns suggest that carotenoid-pigmented collars initially arose in a third species and reached the hybrid zone through historical gene flow. Complex interplay between sexual selection and hybridization has thus shaped phenotypes of these species, where conspicuous sexual traits are key to male reproductive success.
more »
« less
- Award ID(s):
- 2037741
- PAR ID:
- 10631374
- Publisher / Repository:
- American Association Advancement Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 47
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Parsch, John (Ed.)Abstract Carotenoid pigments underlie most of the red, orange, and yellow visual signals used in mate choice in vertebrates. However, many of the underlying processes surrounding the production of carotenoid-based traits remain unclear due to the complex nature of carotenoid uptake, metabolism, and deposition across tissues. Here, we leverage the ability to experimentally induce the production of a carotenoid-based red plumage patch in the red-backed fairywren (Malurus melanocephalus), a songbird in which red plumage is an important male sexual signal. We experimentally elevated testosterone in unornamented males lacking red plumage to induce the production of ornamentation and compared gene expression in both the liver and feather follicles between unornamented control males, testosterone-implanted males, and naturally ornamented males. We show that testosterone upregulates the expression of CYP2J19, a gene known to be involved in ketocarotenoid metabolism, and a putative carotenoid processing gene (ELOVL6) in the liver, and also regulates the expression of putative carotenoid transporter genes in red feather follicles on the back, including ABCG1. In black feathers, carotenoid-related genes are downregulated and melanin genes upregulated, but we find that carotenoids are still present in the feathers. This may be due to the activity of the carotenoid-cleaving enzyme BCO2 in black feathers. Our study provides a first working model of a pathway for carotenoid-based trait production in free-living birds, implicates testosterone as a key regulator of carotenoid-associated gene expression, and suggests hormones may coordinate the many processes that underlie the production of these traits across multiple tissues.more » « less
-
Abstract Large structural variants in the genome, such as inversions, may play an important role in producing population structure and local adaptation to the environment through suppression of recombination. However, relatively few studies have linked inversions to phenotypic traits that are sexually selected and may play a role in reproductive isolation. Here, we found that geographic differences in the sexually selected plumage of a warbler, the common yellowthroat (Geothlypis trichas), are largely due to differences in the Z (sex) chromosome (males are ZZ), which contains at least one putative inversion spanning 40% (31/77 Mb) of its length. The inversions on the Z chromosome vary dramatically east and west of the Appalachian Mountains, which provides evidence of cryptic population structure within the range of the most widespread eastern subspecies (G. t. trichas). In an eastern (New York) and western (Wisconsin) population of this subspecies, female prefer different male ornaments; larger black facial masks are preferred in Wisconsin and larger yellow breasts are preferred in New York. The putative inversion also contains genes related to vision, which could influence mating preferences. Thus, structural variants on the Z chromosome are associated with geographic differences in male ornaments and female choice, which may provide a mechanism for maintaining different patterns of sexual selection in spite of gene flow between populations of the same subspecies.more » « less
-
TBD (Ed.)ABSTRACT Natural selection shapes traits during evolution including animal coloration known to be important for concealment and communication and color has been particularly salient in the explosive radiation of cichlid fish species in the rift valley lakes of East Africa. Though selection can produce variation in color via genetic substrates during early development, plasticity in coloration can occur through endocrine, neural and transcriptional cues in response to various environmental stimuli. It is well known that some animals often change color to match their visual ecology. Adult male cichlid fish (Astatotilapia burtoni, Lake Tanganyika) can switch between blue and yellow body colors. Different colors result from the expression of pigment-bearing cells, which differ in density and function between these two color morphs. We show thatA. burtoniswitches from yellow to blue depending on their visual environment by downregulating endothelin receptor B (EdnRB) mRNA via DNA hypermethylation at a single cytosine residue within its promoter. EdnRB functions in yellow chromatophores to signal the aggregation of yellow pigments, making yellow less visible. Taken together, the regulation ofEdnRBthrough DNA methylation in yellow chromatophores, in part, contributes to pigmentation changes from blue to yellow, depending on visual environment.more » « less
-
Eileen Rees (Ed.)Among dichromatic avian species, the loss of sexual organs can induce reversal of sexual features among females and males. In particular, the phenotypic feminisation or masculinisation of males and females, respectively, has been linked to the presence of testosterone or luteinizing hormones. Specifically, females lacking a functional ovary (e.g. experience an ovariectomy) or males lacking testes have been found to exhibit male breeding plumage in subsequent moult cycles. We conducted post mortem examination on a wild Mallard Anas platyrhynchos, determined genetically as a female but displaying male plumage, and found that the ovary was missing despite the remaining sexual organs being intact. We concluded that this individual provided an example of spontaneous ovarian degeneration, and that its male-like plumage was attributable to a resulting lack of oestrogen in its body. Together, these results further establish that plumage expression is not strictly genetically based, but rather dictated by the ability for the timely expression or suppression of these genes via modifiers, begging the question of why both sexes retain the molecular variation required to express the male plumage.more » « less
An official website of the United States government
